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Abstract

In the field of neural data compression, the prevailing focus has been on optimizing algo-
rithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual
quality. With increasing amounts of data consumed by machines rather than humans, a
new paradigm of machine-oriented compression—which prioritizes the retention of features
salient for machine perception over traditional human-centric criteria—has emerged, cre-
ating several new challenges to the development, evaluation, and deployment of systems
utilizing lossy compression. In particular, it is unclear how different approaches to lossy
compression will affect the performance of downstream machine perception tasks. To ad-
dress this under-explored area, we evaluate various perception models—including image
classification, image segmentation, speech recognition, and music source separation—under
severe lossy compression. We utilize several popular codecs spanning conventional, neu-
ral, and generative compression architectures. Our results indicate three key findings: (1)
using generative compression, it is feasible to leverage highly compressed data while in-
curring a negligible impact on machine perceptual quality; (2) machine perceptual quality
correlates strongly with deep similarity metrics, indicating a crucial role of these metrics
in the development of machine-oriented codecs; and (3) using lossy compressed datasets,
(e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy com-
pression increases machine perceptual quality rather than degrading it. To encourage en-
gagement on this growing area of research, our code and experiments are available at:
https://github.com/danjacobellis/MPQ.

Introduction

In contemporary machine perception pipelines, lossy compression techniques are of-
ten employed, but using legacy codecs at near-lossless quality levels, thus limiting
potential savings in data rate [1]. For instance, the ImageNet dataset, a cornerstone
for image classification tasks, utilizes JPEG compression with an average compres-
sion ratio of roughly 5:1. As a result, the full ImageNet-21k is over 1.3 TB in size,
and common practice is to discard most of this information using a 224x224 reduced
resolution version [2]. Additionally, many types of sensors necessitate extremely high
compression ratios, sometimes exceeding 1000:1 [3], resulting from high resolution
measurements combined with limited communication bandwidth. As a result, vast
amounts of rich, high-fidelity data captured by modern sensors are underutilized or
even discarded entirely.

In the decades since the introduction of the ubiquitous JPEG and MPEG stan-
dards for images and audio, advancements in lossy compression technologies have

danjacobellis@utexas.edu
daniel.cummings@intel.com
neeraja@austin.utexas.edu
https://github.com/danjacobellis/MPQ


Figure 1: Visual comparison of image compression methods. The original ImageNet image
is JPEG compressed at near-lossless quality level of 96 (5.1 BPP), while the Chest X-ray
and bean disease original images are lossless.

demonstrated the capability to achieve high compression ratios with minimal degra-
dation in quality. For example, it has been shown that storing the ImageNet-1k
dataset using the tokens produced by a ViT-VQGAN neural compression model saves
a factor of 100:1 in storage and leads to faster and simplified training [4][5]. While
the advantages of employing more potent lossy compression techniques are evident,
uncertainty surrounding their impact on downstream machine perception tasks re-
mains a significant barrier. For example, Ilyas et al., [6] demonstrate the existence
of signal components, called non-robust features, which are highly predictive yet im-
perceptible to humans. Lossy compression during training is likely to eliminate these
features and thereby lead to sub-optimal models [7]. Additionally, failure to match
the exact lossy compression method and settings during training and inference could
lead to distribution shift and unpredictable model behavior.

Our work aims to systematically evaluate the impact of various types of lossy
compression—both conventional and neural—on both audio and visual machine learn-
ing tasks. By understanding these effects, we aim to bridge the gap between the
promising capabilities of advanced lossy compression techniques and their practical
implementation in machine learning pipelines.

Background

Conventional media compression standards (called codecs) rely on simple but effective
linear transforms that exploit the redundancies of natural signals. For example, the
discrete cosine transform (DCT) used in JPEG and MP3 compresses signal energy



into fewer coefficients. Carefully designed quantization matrices then assign more bits
to perceptually important temporal or spatial sub-bands based on models of human
sensitivity. These compression techniques have remained popular for decades since
they offer a decent compression rate without excessively compromising signal quality.

Two key developments led to a greater focus on neural network based compression.
Ballé et al. [8] showed that autoencoders optimized end-to-end for both rate and
distortion (a.k.a. rate distortion autoencoders or RDAEs) compress images more
effectively than traditional codecs. In parallel, Van den Oord [9] introduced the
vector quantized variational autoencoder (VQ-VAE) as a method of representation
learning. Variants of these architectures emerged specializing them for better human
perceptual quality, both for audio [10] [11] and images [12]. The advent of generative
compression methods [13] led to observation of a rate-distortion-perception trade-
off [14].

In addition to better rate-distortion performance, ongoing codec development ef-
forts also aim to optimize for machine perception, a paradigm referred to as “compres-
sion for machines [15]” or “machine-oriented compression [16].” Most notably, The
JPEG AI standard [17] proposes a single stream image encoder supporting multiple
decoders for both human and machine perception. Harell et al., [18] proposed a tax-
onomy of three different machine-oriented compression approaches. Notable to our
work is the method of full-input machine-oriented compression, where the signal is
fully decoded before performing downstream tasks; this can either be achieved using
an existing codec or by optimizing the compression system for the downstream task.

While the evaluation of human perceptual quality has been extensively stud-
ied, it is less clear how different types lossy compression affect machine perception.
Hendrycks et al., [19] study the impact of various corruptions, including JPEG com-
pression, on image classification performance. Matsuraba et al., [20] study the impact
of various image compression methods on classification and segmentation. Despite
these contributions, a dedicated analysis of severe lossy compression effects across a
variety of applications, including generative compression methods and audio models,
remains unexplored and is the focus of our investigation.

Methodology

We investigate the impact of different audio and image compression techniques on
machine perceptual quality under severe lossy compression—which we define as ratios
compression ratios between 20:1 and 1000:1—and compare against a baseline that
does not have additional compression. We employ six datasets, seven different lossy
compression methods, and use popular pre-trained models for various discriminative
tasks as summarized in Tables 1 and 2. We use the performance on the validation
split of each dataset as a measure of machine perceptual quality. We evaluate the
compression performance based on bitrate, conventional distortion metrics, and deep
similarity metrics.

Models and datasets. We employ the ImageNet-1k dataset for image classifica-
tion, using a vision transformer (ViT) pre-trained on ImageNet-21k [21]. The NIH
ChestX-ray8 dataset [22] for pneumonia classification and the bean disease dataset



Table 1: Summary of Datasets and Models

Dataset Task Type Model Metric

ImageNet-1k Image classification ViT Top-1 Accuracy
ChestX-ray8 Image classification ViT Top-1 Accuracy
Bean Disease Image classification ViT Top-1 Accuracy
ADE20k Image segmentation SegFormer Mean intersection over union
Common Voice Speech recognition Whisper Word recognition accuracy
MUSDB-HQ Music separation Demucs v3 Signal-to-distortion ratio

Table 2: Summary of Compression Methods

Method Description Setting

JPEG Legacy transform-coding based image codec Quality: 5
WEBP Modern transform-coding based image codec Quality: 0
MBT2018 Neural image codec with MSE objective Quality: 1
HiFiC Neural image codec with adversarial objective Quality: Low
MP3 Legacy transform-coding based audio codec Bitrate: 8 kbps
Opus Modern transform-coding based audio codec Bitrate: 6 kbps
EnCodec Neural audio codec with adversarial objective Bitrate: 6 kbps

[23] are also used in conjunction with an ImageNet-21k pre-trained ViT. Semantic
segmentation is performed on the ADE20k dataset [24] using the SegFormer model
[25]. The Common Voice 11.0 dataset [26] and the Whisper model [27] are used for
speech recognition. Finally, the MUSDB-HQ dataset, an uncompressed version of
MUSDB18 [28], and the Demucs v3 model [29] are used for music source separation.
These datasets and corresponding models are summarized in Table 1.

Compression methods The image compression methods in our study include
JPEG, WEBP, the distortion-optimized neural compression approach from Minnen
et al. [30] , and the generative compression method HiFiC [13]. For audio compres-
sion, we use MPEG Layer III (MP3), Opus, and the neural audio model EnCodec
[11]. Table 2 summarizes these methods. Additional implementation details and a
listing of specific model variants are available in our code repository 1.

Evaluation metrics. We use conventional rate-distortion metrics as well as deep
similarity metrics—quality metrics derived from deep neural networks and trained to
predict human judgments of quality. Each metric is calculated on a per-sample basis.

• Bits Per Pixel (BPP) and Bits Per Sample (BPS) are used to measure the rate of
images and audio signals respectively. For the EnCodec model, which supports
a default mode where the VQVAE codes are directly stored and a secondary
mode that uses additional entropy coding, we use the default mode without

1Github: danjacobellis/MPQ
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Figure 2: Performance on various machine perception tasks when using different types of
lossy compression.

entropy coding and calculate BPS using the the product of the codebook size
and the number codes. For all other codecs, we directly measure the rate based
on the size of the encoded file.

• Peak Signal-to-Noise Ratio (PSNR) is used as a conventional distortion metric
for both images and audio. We represent image signals using the range [0, 255]
and represent audio signals using the range [−1, 1], so PSNR = 20 log10(255)−
10 log10(MSE) for images and PSNR = −10 log10(MSE) for audio.

• Learned Perceptual Image Patch Similarity (LPIPS)[31] is a deep similarity
metric specifically designed for images. It captures complex perceptual differ-
ences that simpler metrics like PSNR or SSIM are insensitive to. In the table,
we report −10 log10(LPIPS similarity) to align it with the other quality metrics.

• Contrastive Deep Perceptual Audio Similarity Metric (CDPAM) [32] is a deep
similarity metric is designed for audio. Like LPIPS for images, it captures
perceptual differences more effectively than PSNR. Similar to LPIPS, we report
−10 log10(CDPAM similarity).

Results

Our evaluation across multiple datasets and machine perception tasks reveals key
insights into the impact of lossy compression on machine perceptual quality. The
results are shown in Figure 2 and are summarized in Tables 3 and 4. For image-
based tasks, LPIPS is a better predictor of downstream performance than PSNR,



Table 3: Summary of image results.

Metric Dataset Baseline JPEG WEBP MBT2018 HiFiC

PSNR ImageNet 23.18 24.76 26.67 26.25
ADE20k 23.85 25.59 28.05 27.70

Bean Disease 20.76 21.96 22.92 21.82
Chest X-ray 30.00 32.69 34.70 36.44

LPIPS ImageNet 6.109 7.017 7.945 10.834
ADE20k 7.134 7.959 8.992 11.81

Bean Disease 5.716 6.749 6.899 9.779
Chest X-ray 6.851 7.584 7.799 13.24

BPP ImageNet 0.2647 0.1478 0.1499 0.0263
ADE20k 0.2616 0.1347 0.1347 0.0254

Bean Disease 0.2413 0.1415 0.1484 0.0286
Chest X-ray 0.1646 0.0459 0.0323 0.0108

Classification ImageNet 0.799 0.639 0.720 0.733 0.795
Accuracy Bean Disease 0.9774 0.7669 0.9548 0.9473 0.9849

Chest X-ray 0.9656 0.9673 0.9699 0.9484 0.9656

Segment. MIOU ADE20k 0.3189 0.1191 0.1886 0.2075 0.3008

and generative compression (HiFiC) performs the best at all but one of the tasks
(Chest X-ray) despite having the lowest average bitrate, and consistently achieves
results close to the uncompressed baseline. In the audio domain, similar trends are
observed; the audio quality measured by CDPAM is better predictor of downstream
performance than PSNR, and, among the methods tested, EnCodec provides the best
trade-off between rate and downstream performance for both datasets.

Discussion

Generative compression preserves machine perceptual quality. One area
of concern is that generative compression methods like HiFiC and EnCodec, whose
adversarial training objectives allow them to discard details at the encoder and re-
synthesise them at the decoder, are ill-suited for use within machine perception
pipelines. However, our results indicate the contrary; despite having the highest
compression ratios among the methods tested, these methods performed well across
all tasks, often outperforming methods with significantly higher bitrate. Unfortu-
nately, current generative compression methods are far from being production-ready,
and rely on architectures which are difficult to train, adapt, and deploy. However,
recent advancements have shown remarkable inference speedup in score-based gener-
ative models [33] and vastly simplified training procedures for VQVAEs [34]. By
incorporating such advancements and making these methods more accessible, genera-
tive compression could enable new applications, such as satellite, maritime and aerial
remote sensing systems that require very high compression ratios.



Table 4: Summary of audio results.

Metric Dataset Baseline MP3 OPUS Encodec

PSNR MUSDB18 29.17 22.17 24.95
CV 33.89 26.70 29.04

CDPAM MUSDB18 38.43 36.46 45.33
CV 37.89 38.27 46.34

BPS MUSDB18 0.3628 0.06615 0.06871
CV 0.6696 0.1439 0.1262

SDR MUSDB18 6.286 3.440 0.2986 2.968

WRA CV 0.8488 0.8072 0.7535 0.7950

Correlation of machine perceptual quality with deep similarity metrics.
Deep similarity metrics like LPIPS and CDPAM are known to be highly effective
at predicting human perceptual quality as measured by mean opinion score (MOS).
Across the six datasets tested, our results indicate that such metrics are also strongly
correlated with machine perceptual quality, despite only being trained in a supervised
fashion to predict human judgments of signal distortion pairs. A promising avenue
for future research would be to extend the training objectives for these metrics to
include machine judgments of distortion pairs, making them even more robust.

Pretraining on lossy datasets. Our experiments reveal a surprising phenomenon:
for models pre-trained on lossy datasets like ImageNet, additional lossy compression
at test time may have negligible impact on performance, and can sometimes behave
as an enhancement. For example, the top-1 classification accuracy on the bean dis-
ease dataset is higher when compressed using HiFiC (compression ratio of 839:1) than
when using the original lossless images. Even more surprising is that severe JPEG
compression (see Figure 1) results in an increase in pneumonia classification perfor-
mance on the Chest X-ray dataset, despite having the lowest quality measured by
PSNR or LPIPS. Viewing lossy compression as a type of distribution shift provides
one possible explanation for this phenomenon; subtle high-frequency details that only
exist in lossless images never occur in pre-training datasets like the JPEG-compressed
ImageNet. Exploring pre-training with lossless data may be feasible considering the
moderate compression ratios (5:1) used such datasets. The development of lossless
datasets at ImageNet or larger scale could be valuable for the development of neural
compression systems—for both human and machine applications.

Limitations and Future Directions. By describing the limitations of this work
we hope to highlight subtopics for future research. One key limitation of this study
is the exclusive use of pre-trained models under the framework of full-input machine-
oriented compression. While this approach offers a practical perspective on how
existing models may perform using available compression methods, it does not capture



the potential advantages of models that are tailored to compressed data. We do not
explore other types of machine-oriented compression, such as model-splitting [18].
Although most of the codecs tested allow different quality settings, we only tested
settings on the low end that result in severe loss.

Conclusion

We observe that lossy compression is underutilized in common machine learning
pipelines. Our study reveals a surprising and promising outcome: significantly high
compression rates can be achieved without excessively compromising machine per-
ceptual quality. Thus, more potent lossy compression can be integrated into learning
pipelines, by extending current similarity metrics and optimizing generative compres-
sion for production scenarios. This leads to two key advantages, (1) greater accessi-
bility of large-scale pre-training due to reduced storage requirements and (2) better
utilization of high-resolution sensor data in bandwidth-restricted systems. Future
research should expand the diversity of perception tasks and compression scenarios,
and consider the creation of lossless datasets to explore the effect of lossy compression
during pre-training in greater depth.
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