
The Case for Machine-Oriented Compression

Dan Jacobellis

Contents

1 Head in the clouds 2
1.1 A reading machine for the blind 2
1.2 Attention deficit disorder . 2
1.3 Filter bank robbery . 3
1.4 Deep learning compute myths . 4
1.5 Embarrassingly parallel, embarrassingly redundant 4

2 Representation learning 5
2.1 Information theory and data compression 6
2.2 Conventional codecs . 7
2.3 Vector embedding . 7
2.4 Autoencoders . 8
2.5 Implicit neural representations 9

3 Machine-oriented compression 10
3.1 First generation foundation models 10
3.2 Next-generation media codecs . 11
3.3 Model compilation and deployment 12
3.4 Rate Extortion . 13

1

1 Head in the clouds

We stand at a crossroads where technological innovation has dramatically ex-
panded the limits of what we can achieve with computation. In particular, the
past few decades have seen an unprecedented surge in two areas: cloud comput-
ing and machine learning. Our newfound capacity to ingest massive amounts of
data and perform super-human analysis on it for just pennies worth of compu-
tation has dramatically changed our approach to problem solving.

This explosive growth has not been without its challenges and disruptions.Scientists
and engineers have been cast into a whirlwind of change where the boundaries
of what’s possible are being redefined almost daily. As we navigate this terrain,
it is critical to understand exactly how we got here.

1.1 A reading machine for the blind

In 1976, not long after the first digital image sensors became available, Ray
Kurzweil unveiled his reading machine for the blind.1 It was capable of optical
character recognition (OCR) in any font and for different types of documents
including, books, letters, and receipts. It was capable of scanning the docu-
ment to identify sequences of characters and reading it aloud using a speech
synthesizer at roughly 150 words per minute.

How is it that in 2023, companies like Amazon,2 Google,3 and IBM4 can sell
OCR services that require you to surrender your documents to a data center
miles away? After all, the computational power in our smartphones vastly
exceeds what Kurzweil would have had access to in 1976. Surely it would be
better to do this processing locally! It would prevent wasted transmission of
millions of bits of raw image data to the cloud. It would work without reliable
network access. It would eliminate a host of security and privacy related issues.

I am not alone in putting forth this argument.5 So why hasn’t the needle moved?

1.2 Attention deficit disorder

The tongue-in-cheek title “Attention is All You Need” has been taken quite
literally by the ML community.6 The attention mechanism is no doubt a land-
mark achievement.7 allowing sequence models to scale to billions of parameters

1A Description of the Kurzweil Reading Machine and a Status Report on its Testing and
Dissemination (1977)

2Amazon Web Services OCR
3Google Cloud Platform OCR
4IBM Cloud OCR
5Semianalysis: On Device AI – Double-Edged Sword
6Google search trends: 5 year comparison between ”Transformer model” and ”Self-

supervised learning”
7Wikipedia: Timeline of Machine Learning

2

https://www.rehab.research.va.gov/jour/77/14/1/kleiner.pdf
https://www.rehab.research.va.gov/jour/77/14/1/kleiner.pdf
https://aws.amazon.com/what-is/ocr/
https://cloud.google.com/use-cases/ocr
https://www.ibm.com/cloud/blog/optical-character-recognition
https://www.semianalysis.com/p/on-device-ai-double-edged-sword
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=Transformer%20model,Self-supervised%20learning&hl=en
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=Transformer%20model,Self-supervised%20learning&hl=en
wikipedia:Timeline_of_machine_learning#Timeline

and enabling the pretrain-finetune paradigm used by foundation models like
ChatGPT8 and Stable Diffusion.9

Unfortunately, it has also been seen as a blank check to make models bigger
and more complex. This unending arms race for the best model performance
has many casualties. Academic researchers are forced to compete with multi-
billion dollar companies for the privilege to buy NVIDIA chips with exorbitant
markups.

Meanwhile, other chip makers like AMD, Qualcomm, and ST Microelectronics,
each of whom mass produce cheaper and more power efficient inference hard-
ware101112, are fighting tooth and nail for just a sliver of market share from the
NVIDIA-Google AI hardware Duopoly.13

Governments and non-tech firms are easily fooled into shoveling huge sums of
money into contracts to develop “AI” technologies,14 many of which are thinly
veiled interfaces to free and open source software.15

1.3 Filter bank robbery

The roots of the problem are multi-faceted and complex. The deep learning
community, including academic researchers, educators, and industry have each
contributed to these issues in different ways.

With the rapid pace of development, It has been difficult for university educa-
tors to incorporate deep learning into their curricula.16 In their place, a plethora
of free, online courses have sprung up that promise to make you a deep learning
expert overnight.17 Intimidating signal processing jargon, like ”polyphase in-
terpolation filterbank”18, is dropped in favor of equally confusing deep learning
jargon, like “transposed convolution with dilation and stride”19. The histori-
cal thread of technological development is broken in the process, leading to a
mysticism surrounding deep learning algorithms. With demand for formal and
rigorous ML engineering education outpacing its supply, the process of industrial
adoption has been chaotic and expensive.

While most agree that simpler, more efficient models are needed, we are simul-
taneously tempted by the ease of using massive foundation models like Google’s

8ChatGPT: Optimizing Language Models for Dialogue (November 30, 2022)
9Stable Diffusion Launch Announcement (August 5, 2022)

10ML Commons: Datacenter Inference
11ML Commons: Edge Inference
12ML Commons: Tiny Inference
13MarketWatch: Nvidia ‘should have at least 90%’ of AI chip market with AMD on its heels
14Stanford University: The AI Index Report
15Palantir Edge AI
16Weeping and Gnashing of Teeth: Teaching Deep Learning in Image and Video Processing

Classes (2020)
17Neural Networks: Zero To Hero
18Wikipedia: Polyphase quadrature filter
19Pytorch: Transposed Convolution

3

https://openai.com/blog/chatgpt
https://stability.ai/blog/stable-diffusion-announcement
https://mlcommons.org/en/inference-datacenter-30/
https://mlcommons.org/en/inference-edge-30/
https://mlcommons.org/en/inference-tiny-11/
https://www.marketwatch.com/story/nvidia-should-have-at-least-90-of-ai-chip-market-with-amd-on-its-heels-13d00bff
https://aiindex.stanford.edu/report/
https://www.palantir.com/assets/xrfr7uokpv1b/SobaEwwQdZKESeUTytnNP/82aa2096b43f063f32f421717a5f50aa/Whitepaper_-_Palantir_Edge_AI.pdf
https://ieeexplore.ieee.org/document/9094606
https://ieeexplore.ieee.org/document/9094606
https://karpathy.ai/zero-to-hero.html
wikipedia:Polyphase_quadrature_filter
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

vision transformer20, which receive millions of downloads each month. After all,
it’s hard to argue with the convenience of writing ten lines of python code that
instantly converts millions of bits of image data into convenient, information-
dense floating point matrix21 which can immediately be used for tasks like clas-
sification22 and segmentation.23

1.4 Deep learning compute myths

When discussing the state of deep learning with fellow students and colleagues,
I often find them surprised by the low cost of running deep learning models.
They are astonished to learn it’s possible to buy a $250 GPU that is capable of
cranking out over 10 trillion operations per second24 and with enough VRAM
and train the latest text-to-image models on your own dataset.25 They are
surprised to learn that most smartphones have enough power to run that same
text-to-image model locally.26 They are surprised that an $10 microcontroller
which consumes less than 500mW of power27 can easily run deep learning models
for speech recognition and computer vision in real-time.28

There is a perception that these models must be expensive, and they must be
run on supercomputers with expensive GPUs. We are all witness to the deluge
of machine learning apps that have recently emerged. Their simple interfaces for
everything from image enhancement to document analysis hide the complex or-
chestration of cloud resources underneath. For example, Hugging Face Spaces29

has become ubiquitous for deploying such apps. When running a model on this
free platform, the type of AI supercomputer hardware used is proudly displayed.
“Running on T4,” or “Running on A10G.”

1.5 Embarrassingly parallel, embarrassingly redundant

When I describe common machine learning practices to my colleagues in other
fields like robotics, high performance computing, or wireless communication
systems, they are shocked by practices that are routine in the machine learn-
ing industry. For example, consider the inefficiencies in a typical ML image
processing pipeline:

� Generate an image on an edge device, such as a smartphone or micro-
controller.

20Hugging Face: google/vit-base-patch16-224
21Vision transformer example
22Fine-Tune ViT for Image Classification with HF Transformers
23Meta AI: Segment Anything (2023)
24Wikipedia: RTX 3060
25Using LoRA for Efficient Stable Diffusion Fine-Tuning
26Qualcomm: World’s first on-device demonstration of Stable Diffusion on an Android

phone
27Wikipedia: STM32 H7
28STM32Cube.AI Developer Cloud
29Hugging Face Spaces

4

https://huggingface.co/google/vit-base-patch16-224
https://github.com/danjacobellis/rate-extortion/blob/main/VIT_example.ipynb
https://huggingface.co/blog/fine-tune-vit
https://arxiv.org/abs/2304.02643
wikipedia:GeForce_30_series#Desktop
https://huggingface.co/blog/lora
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
wikipedia:STM32#STM32_H7
https://stm32ai-cs.st.com
https://huggingface.co/spaces

� Apply lossy compression, which discards most of the bits of the image
by reducing redundancies.

� Upload the data to powerful GPUs in the cloud.

� Decode the image, thus reintroducing redundancies, then artificially
increase its precision to floating point for compatibility with neural net-
works.

� Apply expensive deep learning ”feature extraction” routines to elimi-
nate the redundancies and simplify analysis.

� Apply deep learning models to perform the desired analysis, e.g. optical
character recognition or object detection.

The paradigm of machine-oriented compression30 addresses these ineffi-
ciencies. It is a field in its infancy, but its potential impact is immense. It
has the potential to reduce the design complexity of ML systems, making them
fairer and more transparent. Moreover, it opens the door for other chip mak-
ers to compete with NVIDIA and Google by establishing highly versatile and
standardized foundation models. Compare this with the current flood of foun-
dation models, many of which are deprecated within months. Machine-oriented
compression has the potential to create a better ecosystem for offline ML apps
running on smartphones, embedded systems, and robotics platforms.

2 Representation learning

Let’s revisit Kurzweil’s reading machine for the blind. Considering that mod-
ern approaches to document analysis and speech synthesis require massive deep
neural networks and 2020s supercomputers, how was Kurzweil’s machine possi-
ble? Or, more importantly, how can we reclaim the efficiency of this decades-old
system and apply it our present situation?

In short, the answer is representation learning. Unfortunately the term
”representation learning” has been confusingly redefined many times, so its
worth clarify exactly what we mean. In Kevin Murphy’s biblical treatise on
machine learning31, Poole and Kornblinth offer this definition:

“Representation learning is a paradigm for training machine learning models to
transform raw inputs into a form that makes it easier to solve new tasks. Unlike
supervised learning, where the task is known at training time, representation
learning often assumes that we do not know what task we wish to
solve ahead of time.”

Compare this to Kurzweil’s description of his optical character recognition al-
gorithm:

30End-to-End optimized image compression for machines, a study
31Probabilistic Machine Learning: Advanced Topics

5

https://ieeexplore.ieee.org/abstract/document/9418723
https://probml.github.io/pml-book/book2.html

“Each individual character is analyzed by a set of feature extraction routines.
The features, or properties, extracted are those that have been found to be rela-
tively invariant for the same character with respect to the kinds of changes that
occur across different typestyles. These properties are basically geometric—line
segments, concavities, loops, loop extensions, and the positional relationships
among these elements. For example, the properties of a standard capital ”A”
include a single loop and a single south-facing concavity . Once the properties
have been extracted, they are compared to stored lists describing each character
in the identification set.”

By meticulously crafting these features, Kurzweil, not the machine, learned
the representation. Because this representation was so effective at distilling
the structure of text into a few bits of information, he could get by using 1970s
microprocessors. Modern foundation models also learn representations. The
only difference is that the machine, not the human, does the learning.

Machine-oriented compression is the natural progression of representation learn-
ing; in addition to being useful for any task, the representation is also compact
so that it can be efficiently stored or distributed across networks. To understand
the emerging field of machine-oriented compression, it’s essential to understand
the basic tools and techniques that it is being built upon.

2.1 Information theory and data compression

Because of the high density and precision of our the signals we interact with
(e.g. audio, images, and video), storage and transmission of the raw signal is
rarely practical. For example, a standard 1080p video stream is roughly three
billion bits per second (2.98 Gbps) before compression, roughly ten times the
typical capacity of a 5G cellular network (100-400 Mpbs).

Lossy compression32 techniques aim to reduce the data’s size without excessively
compromising its quality. Rate-Distortion Theory33, a branch of information
theory34, provides a theoretical framework for understanding the trade-off be-
tween the amount of data (rate) needed to represent a source and the loss of
quality (distortion) of the representation.

While the bit rate is well defined, ”distortion” is much trickier. Simple distor-
tion metrics like mean squared error are only loosely correlated to the quality
metrics that we actually care about. In audio, image, and video signal process-
ing, a variety of human perceptual quality metrics3536 were co-developed
with lossy compression algorithms. These perceptual quality metrics are now
also understood to have extremely deep connections with natural signal statis-

32Wikipedia: Lossy Compression
33Wikipedia: Rate-Distortion Theory
34Wikipedia: Information Theory
35Wikipedia: Image quality
36Wikipedia: Perceptual Evaluation of Audio Quality

6

wikipedia:Lossy_compression
wikipedia:Rate\OT1\textendash distortion_theory
wikipedia:Information_theory
wikipedia:Image_quality
wikipedia:Perceptual_Evaluation_of_Audio_Quality

tics and efficient learning.37 Machine-oriented compression can be viewed as a
progression of rate distortion theory from human perceptual quality tomachine
perceptual quality: the ability to analyze and make accurate predictions from
lossy representations.

2.2 Conventional codecs

Codecs (short for coder-decoder) such as MPEG and JPEG were standardized
in the 1990s and are still widely used for audio, images, and video. Generally,
these codecs adhere to the paradigm of transform coding, which involves three
main steps:

1. A time-frequency or space-frequency sub-band decomposition.
For example, JPEG uses the two-dimensional type-II DCT38 applied to
8x8 blocks. In MPEG layer III39, an audio signal is efficiently divided into
32 frequency bands using a polyphase filterbank, then each sub-band is
further decomposed using the modified DCT. These types of transforms
have the effect of decorrelating signal components to eliminate redundancy.

2. Perceptual quantization. While data from an audio ADC or image
sensor typically have a precision in the range of 4-16 bits, the sub-band de-
composition may be carried out with higher precision (often 32-bit floating
point) and then quantized to lower precision. a perceptual model is used
to allocated bits to each sub-band. The quantization matrix in JPEG40,
for example, results in between 2-8 bits for each DCT coefficient. Most
of the complexity of standard codecs is in the sub-band bit allocation
procedure.

3. Entropy coding. The lossy compression performed in steps (1) and (2)
is combined with lossless compression to achieve very high compression
ratios. Simple prefix codes such as the Huffman code, Golomb code, and
run-length encoding41 are usually preferred to keep the decoding cheap.

2.3 Vector embedding

The concept of a vector embedding42 (which we will henceforth refer to as ”∇x

embedding” for reasons that will soon become clear) is best explained in the
context of natural language processing, the field that gave birth to the attention
mechanism and the transformer architecture.

Consider an input character sequence from a discrete alphabet (for example
the 128 valid ASCII characters). The standard training procedure for neural

37On the relation between statistical learning and perceptual distances
38Wikipedia: M-D DCT-II
39Wikipedia: MPEG Audio Layer III
40Wikipedia: JPEG Quantization
41Wikipedia: Entropy Coding
42Pytorch: Embedding

7

https://arxiv.org/abs/2106.04427
wikipedia:Discrete_cosine_transform#Multidimensional_DCTs
wikipedia:MP3
wikipedia:JPEG#Quantization
wikipedia:Entropy_coding
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

networks consists of a high precision (16 or 32 bit floating point) representation
at the input neurons and some form of normalization. This works extremely
well, in part because of the remarkable ability of the floating point number
system to efficiently represent real numbers. When training a neural network,
how should we represent our 7-bit characters which represent a category rather
than a real number? One approach is to simply one-hot encode.43 This works,
but leads to unreasonable memory requirements and dramatically increases the
number of network parameters. The “∇x embedding” technique instead consists
of the following:

� Create a lookup table that maps the each of the 128 possible input tokens
to a unique vector in an M dimensional space. We will call this 128 x M
matrix the ”embedding matrix” and we will initialize it with i.i.d. samples
from a standard Gaussian.

� When training, map the input tokens to vectors according to the embed-
ding matrix/lookup table. Use the result of this mapping as the input to
the network instead of the categorical variables.

� Train the neural network as usual. That is, compute the gradient of the
loss function with respect to the neural network parameters, ∇θL. Moving
in the opposite direction of this gradient will adjust the parameters to
minimize the loss.

� In addition, compute the gradient of the loss function with respect to the
input, ∇xL. Since the input is simply the entries of the embedding table,
moving in the opposite direction of this gradient will learn a represen-
tation that minimizes the loss.

2.4 Autoencoders

A plethora of architectures for autoencoders have been proposed. One common-
ality among them is a reconstruction objective. In other words, the target
output should be similar to the input. Stated another way, the loss function
includes a distortion metric.

The distortion metric can be chosen for mathematical convenience (e.g. squared
error), but for an autoencoder to achieve our design goals it is preferable to
choose an application specific metric. For example, to optimize for human
perceptual quality of images, we might use structural similarity (SSIM) as the
distortion metric.

Some notable flavors of autoencoders include:

� The Variational autoencoder (VAE), which adds an additional loss
term that forces the learned representation towards a specific probability
distribution (typically Gaussian). Recently, foundation models for audio,

43Wikipedia: One-hot

8

wikipedia:One-hot

images, and video have utilized this architecture to improve the efficiency
of diffusion models.44

� Vector-quantized VAE (VQ-VAE). In addition to the reconstruction
loss, a codebook loss similar to the standard vector quantization/k-means
objective is added. Neural codecs including Google Soundstream45 and
Meta’s EnCodec46 have recently been standardized and use variants of
the VQ-VAE to achieve extremely high compression ratios. Recent audio
synthesis models for for speech47 and music48 use representations learned
from a VQ-VAE.

� The denoising autoencoder49 and masked autoencoder50 leave the
target the same, but only provide partial access to the input. These
techniques have been extremely successful in modeling language, audio,
and images. These are foundational tools used in the paradigm of self-
supervised learning.51

� The rate-distortion autoencoder, aka “nonlinear transform cod-
ing”52 penalizes the entropy of the latent representation. When originally
proposed for image compression, Ballé et. al. established an important
theoretical link between this technique and the VAE.53

2.5 Implicit neural representations

An newer technique that is rapidly gaining traction is the concept of implicit
neural representations (INRs), now commonly referred to as functa. This field
of study is still in its infancy, so I will defer to Dupont’s recent dissertation on
the topic54, which provides this excellent description:

”Data is often represented by arrays, such as a 2D grid of pixels for images.
However, the underlying signal represented by these arrays is often continuous,
such as the scene depicted in an image. A powerful continuous alternative to
discrete arrays is then to represent such signals with an implicit neural repre-
sentation (INR), a neural network trained to output the appropriate signal value
for any input spatial location. An image for example, can be parameterized by
a neural network mapping pixel locations to RGB values.”

This basic technique has been massively successful in computer graphics55 and

44High-Resolution Image Synthesis With Latent Diffusion Models
45Google Soundstream
46EnCodec
47VALL-E Neural Speech Codec
48MusicLM: Generating Music From Text
49Wikipedia: Denoising Autoencoder
50Masked Autoencoders Are Scalable Vision Learners
51Self-supervised learning
52Nonlinear Transform Coding
53End-to-end Optimized Image Compression
54Neural Networks as Data
55Neural Radiance Fields

9

https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
https://github.com/wesbz/SoundStream
https://github.com/facebookresearch/encodec
https://vall-e.io
https://google-research.github.io/seanet/musiclm/examples/https://google-research.github.io/seanet/musiclm/examples/
wikipedia:Autoencoder#Denoising_autoencoder_(DAE)
https://arxiv.org/abs/2111.06377
wikipedia:Self-supervised_learning
https://ieeexplore.ieee.org/abstract/document/9242247
https://www.cns.nyu.edu/~lcv/iclr2017/
https://ora.ox.ac.uk/objects/uuid:c573637c-bf05-4e8a-a8e4-d499eec77446
https://www.matthewtancik.com/nerf

researchers have recently started to close the gap for other applications like
inverse problems56 and video compression.57

3 Machine-oriented compression

I have only begun to scratch the surface on the plethora of representation learn-
ing techniques that have been enormously successful at building the current
generation of foundation models. I hope that this has helped cultivate an ap-
preciation for the breadth of different architectures and objectives that are used
by these foundation models; there is much more to them than simply scaling
their size with the attention mechanism. As impressive as these foundation
models are, I will argue that machine-oriented compression will become
the next generation of foundation models.

3.1 First generation foundation models

At present, foundation models are typically trained in two stages (1) self-
supervised pretraining and (2) task-specific fine-tuning. This paradigm
works remarkably well for a wide range of tasks, complexities, and model sizes.
For example:

� A self-supervised vision transformer is trained using masked patch predic-
tion58, then fine-tuned to classify pictures of food.59

� A self-supervised audio transformer is trained to minimize a contrastive
loss60, then fine-tuned to perform speech recognition.61

� A self-supervised text transformer is trained using masked token predic-
tion,62 then fine tuned using reinforcement learning with human feedback
to follow instructions.63

Clearly, the representations produced by these models are incredibly powerful.
However, such representations were never designed to be able to reconstruct
the original data. Additionally, design choices (e.g. the training objective
and loss function) in the self-supervised training step will affect the type of
tasks that the foundation model can be used for. In most cases, only a handful
(and in many cases a single) fine-tuning task is considered when designing the
self-supervised pretraining model.

What if we expanded the scope of pretraining from general-purpose ob-
jectives like masked prediction to include one or more anticipated fine-tuning

56Wavelet Implicit Neural Representations
57Video Compression With Entropy-Constrained Neural Representations
58An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
59Fine-tuning image classifier on Food-101 dataset
60wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
61Speech Recognition with Wav2Vec2
62Improving language understanding with unsupervised learning
63ChatGPT: Optimizing Language Models for Dialogue

10

https://vishwa91.github.io/wire
https://openaccess.thecvf.com/content/CVPR2023/html/Gomes_Video_Compression_With_Entropy-Constrained_Neural_Representations_CVPR_2023_paper.html
https://arxiv.org/abs/2010.11929
https://huggingface.co/docs/transformers/tasks/image_classification
https://arxiv.org/abs/2006.11477
https://pytorch.org/audio/stable/tutorials/speech_recognition_pipeline_tutorial.html
https://openai.com/research/language-unsupervised
https://openai.com/blog/chatgpt

objectives? This can be considered a type of multitask learning64 which
would yield representations that meet several objectives. Anchoring secondary
objectives to a core rate-distortion objective is a promising way to achieve
this. Additionally, there are compelling justifications stemming from the study
of algorithmic information theory65.

3.2 Next-generation media codecs

I am not alone in making this case. Machine-oriented compression has been
explicitly expressed as the goal of next-generation media codecs, most notably
JPEG AI. In May 2023, JPEG announced a set of design goals for JPEG AI,66

including:

� High compression efficiency in terms of rate distortion performance.

� Hardware platform agnosticism

� Effective compressed domain processing for (1) classification, (2) super-
resolution, (3) denoising, and more tasks to be specified in the future.

The current JPEG AI proposal only specifies these desired requirements. It only
puts forth a very rough picture of a system that might achieve these goals. It our
job to materialize these goals into something real. It will likely be several years
before any specific architectures are standardized. In fact, It’s very possible
that JPEG AI will never take off, and suffer the same fate as JPEG 2000 and
the plethora of other codecs which have become footnotes instead of seeing
widespread adoption. However, this general approach offers several compelling
benefits:

� Multitask learning has been shown to have several advantages, especially
in terms of data efficiency and training convergence speed.67

� ML engineers are already building complex systems around representa-
tions from foundation models and building custom vector databases68

specifically for them. Machine-oriented compression will grant the critical
property of memory efficiency.

Still, the most compelling argument for machine-oriented compression is the
effect it will have on our deployment strategy for ML models and hardware
agnosticism.

64Wikipedia: Multi-task learning
65Wikipedia: Algorithmic Information Theory
66The JPEG AI Standard: Providing Efficient Human and Machine Visual Data Consump-

tion
67Multi-Task Learning with Deep Neural Networks: A Survey
68Wikipedia: Vector database

11

wikipedia:Multi-task_learning
wikipedia:Algorithmic_information_theory
https://ieeexplore.ieee.org/document/10123093
https://ieeexplore.ieee.org/document/10123093
https://arxiv.org/abs/2009.09796
wikipedia:Vector_database

3.3 Model compilation and deployment

ML deployment scenarios often face stringent size, weight, and power (SWaP)
constraints. Depending on these constraints, we can group applications into one
of four clusters:

� Online datacenters, which receive lossy compressed input data from the
internet and have minimal model inference constraints. Servers in these
data centers may utilize general-purpose coprocessors suitable for training
(for example, NVIDIA H100) or coprocessors specifically optimized for
inference (such as the Qualcomm Cloud AI 100).

� Edge devices, which receive inputs directly, bypassing lossy compression.
Examples of such devices include the NVIDIA Jetson69 or the Thunder-
comm Edge AI Station.70

� Mobile devices, which often include a Neural Processing Unit (NPU) or a
Digital Signal Processor (DSP) that shares resources with other applica-
tions71 and can be used for ML acceleration.

� Embedded systems and microcontrollers, which may also include a NPU
or DSP, but usually operate on bare metal or using a real-time operating
system.

During model training, ML researchers and engineers almost universally use
frameworks and libraries (like PyTorch and CUDA) which were not designed
with mobile or embedded deployment in mind. Consequently, device manufac-
turers have begun to develop their own model compilation tools. Some notable
examples include the Qualcomm’s Neural Processing SDK 72and Microelectron-
ics’s STM32CubeAI.73

From the perspective of an ML engineer, the deployment process has several
cumbersome steps:

1. Train the models using standard frameworks and libraries like Pytorch
and CUDA.

2. Use an interchange format (e.g. ONNX74) to store the model and weights.

3. Use the mobile or embedded hardware manufacturer’s compilation tools
to optimize the model for a specific target.

4. Validate whether the compiled model meets all design objectives. In par-
ticular:

69Wikipedia: Nvidia Jetson
70Thundercomm Edge AI Station
71Wikipedia: Quallcomm Snapdragon
72Qualcomm Neural Processing SDK
73STM32CubeAI
74Wikipedia: Open Neural Network Exchange

12

wikipedia:Nvidia_Jetson
https://www.thundercomm.com/products/?product_cat=ai-box
wikipedia:Qualcomm_Snapdragon
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://stm32ai.st.com/stm32-cube-ai/
wikipedia:Open_Neural_Network_Exchange

� Predictive performance, which could be diminished compared to train-
ing due to model compression techniques like quantization or pruning.

� Computational performance, which can be evaluated in terms of la-
tency, CPU utilization, memory usage, and so forth.

5. If the model fails to meet one or more design goals, go back one or more
steps, possibly retraining or choosing a new hardware platform.

As difficult as this process already is, the supremacy of large foundation models
and the pretrain-finetune paradigm leads to even more complexity. In many
cases, it might be optimal to distribute a single model across several edge de-
vices. For example, consider the deployment of a voice-activated home automa-
tion system, which uses all four types of inference (datacenter, edge, mobile,
and embedded).

� The system makes API calls to a large language model running in a dat-
acenter to respond to complex queries.

� An edge device, permanently stationed in the home, is used to fine-tune
the speech recognition model for user specific patterns and commands.

� A mobile device runs a speech-to-text model.

� A low power embedded system runs a voice detection model to decide
when to engage the speech recognition model.

Machine-oriented compression offers and elegant solution to the deployment
problem. Rather that force hardware manufacturers to support the incredibly
complex processing pipelines of the latest foundation models, they could simply
implement a handful of encoders and decoders specified my a machine-oriented
compression algorithm. This is not unlike the status quo prior to ML and cloud
computing revolutions; since the inception of media compression algorithms
like MPEG in the 1990s, our devices have used ASICs and DSPs to offload the
expensive but very predictable computation of media compression away from
general purpose CPUs.

3.4 Rate Extortion

Machine-oriented compression is an exciting frontier. It leverages nearly a cen-
tury of technological progress in information theory and signal processing to
amplify the abilities of machine learning systems, and will help us build the
next generation of foundation models.

By abstracting the complexities of model deployment, machine-oriented com-
pression will help streamline the adoption of these foundation models into indus-
try. It can reduce the design complexity of ML systems, allowing educators to
keep pace in providing a relevant but rigorous understanding of these systems.
These are critical challenges as we attempt to safely adopt ML technologies into
every sector of our economy from entertainment to defense.

13

The widespread adoption of machine-oriented compression is fraught with chal-
lenges. We should learn from the mistakes of the dozens of media codecs which
failed to meet their potential. We must do so by making the development of
these technologies open and inviting. It’s crucial for the community to come
together, sharing expertise, resources, and insights to bring this promising tech-
nology to fruition.

14

	Head in the clouds
	A reading machine for the blind
	Attention deficit disorder
	Filter bank robbery
	Deep learning compute myths
	Embarrassingly parallel, embarrassingly redundant

	Representation learning
	Information theory and data compression
	Conventional codecs
	Vector embedding
	Autoencoders
	Implicit neural representations

	Machine-oriented compression
	First generation foundation models
	Next-generation media codecs
	Model compilation and deployment
	Rate Extortion

