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Overview Major cloud providers now provide “model-less” platforms, such as AzureML [2], SageMaker [1],
and VertexAI [3], that streamline the ML development workflow. These platforms perform much of the
heavy lifting required for inference by automatically calibrating models to the target hardware. However,
the streamlined process afforded by these “model-less” abilities does not extend to training, with providers
only offering a handful of heuristics-based AutoML tools. As a result, it remains prohibitively difficult
and expensive to develop ML models for many niche applications, including biomedicine, remote sensing,
and robotics [5, 15]. General-purpose foundation models and the pretrain-finetune paradigm [12] offer a
powerful solution, but at the cost of opaque models with high inference costs [11]; for example, inference
of a fine-tuned GPT-4 model is 4.5 times more expensive than the base model [16]. To meaningfully aid
the model development and training process, we should leave behind finetuning and the baggage of billion-
parameter foundation models and embrace alternative training strategies that manifest the full benefits of
specialization—better performance, smaller models, and more efficient inference.

The need for accessible training Despite the rapid adoption of ML across industries and disciplines,
many civil, medical, and scientific applications have yet to benefit from learning-based approaches for three
main reasons [15].

1. When serious outcomes are at stake, transparency, explainability, and generalizability become much
more important than test-set accuracy; billion parameters models are often a nonstarter.

2. Data are often collected with proprietary sensors, in formats scrutible only to domain-experts, and
encumbered by various privacy restrictions.

3. Enlisting teams of ML engineers and securing sufficient compute to build and maintain custom models
is not feasible under tight budgets or dynamic operations.

The limitations of finetuning The impressive performance of foundation models like GPT are the result
of semi-supervised learning (SSL)— training strategies like masked prediction [8] that distill petabytes of un-
labeled web data into a general-purpose predictive model. Parameter efficient finetuning (PEFT) techniques
[10], such as LoRA [13] and IA3 [14], allow exposure to user-provided data with minimal extra training.
Although it costs millions of dollars to train a single foundation model via SSL, platforms like AutoTrain [9]
and Modal [4] automatically apply PEFT, allowing users to repurpose one model into many. However, this
approach to adaptation results in models that are necessarily larger and more computationally expensive
than their general-purpose parents, since it requires freezing the vast majority of weights and adding addi-
tional trainable parameters. Finetuning is also prone to catastrophic forgetting, leading some pioneers of the
technique to abandon it altogether [11].

Scaling (down) foundation models Without finetuning, how can we impart a model with knowledge
beyond the primary training data? In the fine-tuning paradigm, the pre-trained model encapsulates the
knowledge of the large-scale dataset it was trained on. However, techniques exist to distill this knowledge
into a new, tiny dataset [19] which can be efficiently trained on with a smaller model. Another challenge
is replicating the incredible capabilities and generalizability that emerge as a result of performing SSL at
scale. Novel SSL strategies are one possible solution. For example, utilizing compression-based tasks for
pretraining—reconstructing the input from a learned, low-dimensional representation—has shown promising
results with modest dataset and model sizes [21, 6, 7, 18, 17, 20]. Tightly integrating these techniques into
our ML platforms to cultivate an ecosystem of leaner, specialized models will allow more applications to
benefit from learning-based approaches.
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