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Why do we need compression?

[Modern sensor hardware provides incredible power efficiency J

7-channel spatial 2.5 t‘;\;i:;hour
audio array y
6 Mbits/sec
L IMU, barometer,

30 Hours of
‘ recording on a |
single charge

magnometer

—— 8™mP
Front facing
camera
2x high FOV scene 200 Mbits/sec
cameras
74 Mbits/sec : , 2x eye tracking
projectaria.com cameras 36 Mbits/sec

{ High resolution signals are too large to process on device or transmit to the cloud J



http://projectaria.com

Types of compression systems

Lossless I
Linear Transform coding 0SSy

Huffman
JPEG 2000 JPEG

ANS
Arithmetic WEBP AV Vector quantization

Golomb

Resolution Reduction

Scalar quantization

Learned Compression

JPEG-AI

Generative Compression

Bits back coding Stable Diffusion

Cosmos




Linear transform coding

Most of the bits that move across

the internet today use linear
transform coding (e.g. JPEG, AV1)

These codecs use energy
compacting transforms (e.g. DCT)
to create a sparse representation

Bits are allocated to different
components using models of
human perception

Exploit sparsity via entropy
coding (RLE, huffman, etc)
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Learned compression using neural networks

Teaching signal

Output layer

Input layer ‘
Compression Net Reconstruction net

Learning (CODER) (DECODER 7 >
, _ , 7
images Hidden Layers Hidden layers ’ v.;"'!.;!!""" i
(training /‘"é‘fa‘i-’" ’
data) ransmission ,’WE(
Channel <N .As\ ’ Error

. P _
\Quantizer Processing unit ~/ detection
Actual images

after learning Error propagation (Minimize SNR)

Learn the transform and quantizer from representative data

High compression efficiency = Poor computational efficiency

Sonehara, et al. "Image data compression using a neural network model.”
International 1989 Joint Conference on Neural Networks. IEEE, 1989.



Compression efficiency vs computational efficiency

JPEG Original Neural Network

64 parameters Millions of Parameters
<500 MACs/pixel >100k MACs/pixel




Generative compression

« Autoencoder will struggle
to preserve details, texture

and high frequencies 2z |Encll Q|| pec >

« Use a generative model A
to resynthesize the details

...........




Who is the perceiver?

[ We need machine-oriented compression systems J




Perceptual quality

Legacy transform codec Modern transform codec MSE Autoencoder Generative Autoencoder

1 L [

Human perceptual quality is well modeled (e.g. LPIPS)
What about machine perception for specific applications?




Original (0.1 MP)

2.5x 10° bits

Machine perceptual quality

AVIF

3.1x 10* bits

Cosmos

2.5% 10* bits

Does the high human perceptual quality of generative
codecs translate to high machine perceptual quality?

Yes; generative codecs often provide better downstream

performance than conventional methods at lower rates

Accuracy vs Bitrate [ImageNet-1Kk]

>
g 0.9
: .
< 08 15% Equivalent to
a using a 30x
O
uc:%d smaller model
:“LEJ 0.7 —o— AVIF |
% —o— (Cosmos
O 0.6 S———

103 104 10°

Bits used to represent input image
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Does lossy compression always hurt accuracy?

How could lossy compression increase performance? Legacy transform coding

) ) Modern transform coding
Datasets used to pre-train foundation models use legacy

JPEG and MPEG compression at default settings

MSE-optimized autoencoder

: : L. i Generative compression
High quality, lossless samples are out of distribution!

Chest X-ray Classif.

0.98

0.96 - No add. compression
mbt2018
A

0.94 ~

Classification Accuracy

. : . 0.92 . . ,
Pristine, high resolution inputs 0.00 0.05 0.0 0.5 0.20

Bits Per Pixel (bpp) »



Original

Denoising effect of lossy compression

Legacy transform Modern transform MSE-optimized
coding (JPEG) coding (WEBP) Autoencoder

Generative
model (HiFiC)

i
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How much power is available for sensing?

Mobile, remote, and wearable sensors produce constant streams of high resolution signals

Sensor efficiency is increasing, while ML models get more expensive

S Solution: divide computation between sensor and cloud

\

Battey capacity (Watt-hours)

13



Compression for mobile and remote sensing

\
Mobile, remote, and wearable sensors produce constant streams of high resolution signals
Sensor efficiency is increasing, while ML models get more expensive
k Solution: divide computation between sensor and cloud y
Sensor Remote/Cloud
A - %, 4 ML Applications
} jf ;": _ ' ] jl> Classification
! .} , ] Enc. Dec. Segmentation
co Enhancement
b . ’ /
Original Signal Lossy reconstruction
Demands high Degrades Adds decoding

compression ratio accuracy overhead 14



Machine-oriented compression

\
Mobile, remote, and wearable sensors produce constant streams of high resolution signals
Sensor efficiency is increasing, while ML models get more expensive
k Solution: divide computation between sensor and cloud y
Machine-
Sensor . Remote/Cloud
interpretable
features . T
4 ML Applications A
jl> Classification :
Enc. Segmentation
Enhancement
N : /
Optional decoding |

Less bandwidth Enhanced accuracy More efficient ML

15



Machine-oriented compression

What are ideal characteristics of the compression system?

it Enc.
. :y ::. ‘ L4
Original Signal
Less bandwidth

Machine-
interpretable
features

-

b Optional decoding |

Remote/Cloud

4 ML Applications
Classification
Segmentation
Enhancement

Enhanced accuracy

S :
. M 5
v sy _.\{ g
* PR et
AhR1
J ™ § i
4 Ahe |
e glES it
S T ey 38! :
~ 9 A T 3
Tgitie Bl \ - Wl

More efficient ML
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Machine-oriented compression

4 )
What are ideal characteristics of the compression system?

* Support many modalities

- /

DEWAA AND DETECTORS

* Hyperspectral

TAFE RECORDER

o i
‘ ﬂ TAPE REC
1] W seecraomerver | ELECTRONICS
‘ L ) I
e -
SR — QPTICA
AT
| |
e il
GYROS
SCAN DRIVE
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Machine-oriented compression

-

N

What are ideal characteristics of the compression system?

* Support many modalities

* Hyperspectral

* Spatial Audio

18



Machine-oriented compression

-

-

What are ideal characteristics of the compression system?

* Support many modalities

A A A1

Hyperspectral A LA LA
EReEEn

—rR2ERS9

Spatial Audio - B 111081
PRENDVERED

3D volumes, 4 A4 A1 3 Al
medical images RS Q"-GW
L lidA LAl
PREEAMRAERDD
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Machine-oriented compression

-

N

What are ideal characteristics of the compression system?

* Support many modalities * Allow efficient encoding

---------

Enc.

Oriia Signal

20



Machine-oriented compression

-

What are ideal characteristics of the compression system?

* Support many modalities

* Allow efficient encoding ¢ Preserve details

Generative models synthesize details
For recognition, we must preserve details

Stable Diff. VAE

21



Machine-oriented compression

-

What are ideal characteristics of the compression system?

* Support many modalities

* Allow efficient encoding

_ * Achieve high compression rate

* Preserve details

Enc.

Oriia Signal

Less bandwidth

22



Machine-oriented compression

-

N

What are ideal characteristics of the compression system?

* Support many modalities <+ Allow efficient encoding

* Achieve high compression rate

Preserve details

Accelerate downstream ML models

Machine-
interpretable
features

-

ML Applications

Classification

Segmentation

Enhancement

23



Machine-oriented compression

4 . _y . M
What are ideal characteristics of the compression system?
* Support many modalities ¢ Allow efficient encoding * Preserve details
_* Achieve high compressionrate * Accelerate downstream ML models P
Machine-
Sensor . Remote/Cloud
interpretable
features ’
4 ML Applications R N Al
jl> Classification :
Enc. Segmentation
Enhancement
o : /

b Optional decoding |

Less bandwidth Enhanced accuracy More efficient ML

24



Comparison of existing codec designs

Resample WEBP DGML (Cheng2020) Stable Diff. VAE
RR LTC E2ELC GenAE Goal
Allow efficient encoding u U x )( ;
Accelerate downstream ML u x x U ;
Achieve high compression rate x u L x ;
Preserve details x u L x ;
Support many modalities U x L x ;

25



Encoding efficiency

Inspired by linear
transform coding

Forgo expensive DNN-based
analysis transform; leverage
efficient, separable transform for
energy compaction instead
(wavelet packet decomposition)

\2RAZK/

Proposed design
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Wavelet packet transform

4]

Xpnl

Hy |2 — —> T2 Hg
— Hy |2 - T2 Hs
» Ly )2 12 Lg
1o
> Hp |2 12 Hs
— L |2 | T2 Lg
» Lp |2 T2 Lg
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WPT exchanges spatial resolution with channels

No information loss Energy compaction



Encoding efficiency

Inspired by linear
transform coding

Forgo expensive DNN-based
analysis transform; leverage
efficient, separable transform for
energy compaction instead
(wavelet packet decomposition)

Proposed design

Dimension reduction

Inspired by
generative
autoencoders

Don’t rely exclusively on
sparsity; use channel bottleneck
to provide guaranteed, uniform
dimensionality reduction to
accelerate downstream models

29



Autoencoder for dimension reduction

Spatial compression

— 1X
ey
= 2X
] —— 4x
@ —— 8x
c ® 16X
é 4 More compressive AE = lower dimension A 10

pE— X

Lower dimension = higher throughput

When increasing the degree of compression,
\_ throughput improves more than quality drops )

Throughput

“High-Resolution Image Synthesis with Latent Diffusion Models”
(aka “Stable Diffusion”) Rombach et al. 2021



Autoencoder for dimension reduction

113X more expensive than WEBP
34M param. DNN

Decoder

(Generative)

Encoder
(Lossy)

Original Image "Latent" Image Decoded Image

(3%512x512) ﬂ (4x64x64) (3%512x512)

48 lower dimension

“High-Resolution Image Synthesis with Latent Diffusion Models”
(aka “Stable Diffusion”) Rombach et al. 2021

31



Does the encoder need to be so expensive?

Synthesizing details is hard A

Discarding details is easy

7 Use a simple encoder (e.g. linear projection)

J
[ Transformer Encoder }
Pmmuiﬁﬁdﬁﬁ@iéé
#* Extra learnable
[class] embedding Lmear PI‘OJeC'[IOI’l of Flattened Patches

. . Ry "”l Wq‘
| \ A g uL
T ‘ % 3
) & "*\ n - %‘H 7"‘“3 -;" g & ¥

mwv

“An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale” (aka “ViT”) Beyer et al. 2021

ViT-B/16
Patch size 3x16x16
Sequence Len 196
Embedding Dim 768
Compression 1:1
Accuracy 86.1
ViT-B/32
Patch size 3%x32x32
Sequence Len. 49
Embedding Dim 768
Compression 4:1
Accuracy 83.3




Inspired by linear
transform coding

Forgo expensive DNN-based
analysis transform; leverage
efficient, separable transform for
energy compaction instead
(wavelet packet decomposition)

g/
|
733

Proposed design

Compression ratio

Inspired by Inspired by E2E
generative AEs learned compression
Don’t rely exclusively on Guarantee resilience to
sparsity; use channel bottleneck ~ quantization via additive noise
to provide guaranteed, uniform during training. Leverage
dimensionality reduction to existing lossless codecs as a
accelerate downstream models compression multiplier.

§ -

1

float—int8

33



E2E learned compression: quantization and entropy coding

[Learnable analysD

transform (linear)

\_GalX} =WX+b /

Gearnable synthes&
transform (DNN)

‘% ; BERET A
= poa =
L ' 5 ot r
i =¥ 1 L 15
- ] - . ¢ ; -v
N

Gsiz} = €0 fy g0

\fi = d(W;Z; + b;)

=

[ Companding \

(2) /

0

%
[ Decompanding\

e

1 1
—-127 127

N

4 )
Entropy

bottleneck
(training)

(Entropy bottleneck\
(compression)

I

0_

=

kCID(z) + 'u)

\_ A

\ float—6>int8 j

[ Entropy coding\

& file load /store
webap

- flac
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Proposed design

Encoding efficiency Dimension reduction Compression ratio
Inspired by linear Inspired by Inspired by E2E
transform coding generative AEs learned compression

Forgo —_ . . . - _ . _ |
navl WaLLoC: Wavelet Learned Lossy Compression | "
energy compaction instead darmensrionarity Teauction to EXISUITE TOSSIESS COUECS as a
(wavelet packet decomposition) accelerate downstream models compression multiplier.
L ‘ SN
float—1int8




WaLLoC workflow

Encoding efficiency Dimension reduction Compression ratio

(Wavelet packet\ éearnable analysi\s Gntropy bottlene&
analysis transform (linear) (compression)
i ), I
QA{X} = WX + U g Entropy\ \_ float6—>int8 )
bottleneck s
( Wavelet packet\ (earnable synthe% giil)nj_n%) ﬁintropy coding\
synthesis g transform (DNN) \_ J | &fileload/store
> - W — web[,ap
v L?l | : (::I B, <:> D
5 = B GstZ} =0 £y - * Iflac
\ %= IWPT{X} Yy \ % = 0(W2; +b,)/ -
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How to avoid the pitfalls of generative autoencoders?

Resample WEBP DGML (Cheng2020) Stable Diff. VAE
RR LTC E2ELC GenAE Goal
Allow efficient encoding u U x )( ;
Accelerate downstream ML u x x U ;
Achieve high compression rate x u L x ;
Preserve details x u L x ;
[y | & | % | &

37




Loss function

L(x, %) = MSE(L
Po

LPF(2})

SE
frequencies)

(does not pe ze h

Only preserves low Requires pre-trained models
frequency details specific to RGB images

L(x,x) = MSE(x, X)
x = decode(encode(x) + U)

Better preservation of high  Supports a wide range of
frequency details modalities

“Training VQGAN and VAE, with detailed explanation”
S. Ryu, 2024. github.com/cloneofsimo/vqgan-training

38



github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training

Comparison of autoencoder designs (RGB image)

Compression
Distortion Ratio
(PSNR)
DGML
(Cheng2020) vrs Dimension
— Stable Diff. 3 9 Reduction
— WaLLoC high (Ours)
— WaLLoC low (Ours)
Perceptual
Quality
(DISTS)
Throughput

(MPixels/sec)



Comparison of autoencoder designs (stereo audio)

Compression
Ratio
Distortion
(SDR) \

EnCodec > | |
— Stable Audio Y \ Dlrgens.lon
— WaLLoC high (ours) Reduction
— WaLLoC low (ours) \

Spatial
Quality
(SSDR)
Throughput

(MSamples/sec)



How does it perform on downstream applications?

Image Classification Document Understanding

WINSTON LT, G725 WITH 1% TURKISH EXTRACT/5%5-9/100/05-12-92
SET # 14

DOSE-ug PLATE COUNTS MEAN S.D.

HitHE

100

Q: What is the date -
mentioned in the sore= o-tosiezos
second table?

8. 376.3 15.3
108Y 2uslm S lodssee

CONTROL WINSTON LT, LOW EX1 G7 SHEET/5%5-9/100/05-12-92
SET # 15 ;280-300

DOSE~-ug PLATE COUNTS MEAN S.D.

A: [ “@5-12-92” ] = REE

5.000
75.0000
.0000
125.0000

SLOPE= 0.9183201E+00 /5 C&)I”\S W lodoye,

Source Separation

é/ GRS i éx

'4|M'WP'M|h" > i

T e @ .




Comparison vs. resolution reduction

Reduced resolution & reduced computation

/ Image classification Document analy%
75 - N
~ = 80-
> Z 4x lower latency
g 50 ;
: 2 60 21GB—8GB GPU Mem
—~
O -
< 5 85% — 44% Accuracy
25 < 40l
642 1282 2560 2042 448 896
Resolution (px) Resolution (px)

Baseline @ Resample —@—
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Comparison vs. resolution reduction

Increased resolution & fixed computation
ﬂ 0 Image colorization Source separatioﬁ

341
— / —
c e e g m 25 @M 331
Diminishing return of |2 < -~
. 9p)
larger patches / filters |& Z 321 /0\
ol )
3 2.0- ~
311
1282 256 5122 24 11 44
k Resolution (px) Sampling rate (k@/

| Baseline @ Larger patches —@—




Comparison vs. resolution reduction

Reduced resolution & reduced computation Increased resolution & fixed computation

Image classification Document analy% / Image colorization Source se aratioh
= =

— (i]) go_l/l 34 -
£ Z - -
g / < = 251 @ 33
@) > o T
e 2 60 ) o~
5 = = Z 321
< 2 5 20 L ‘/\
25 < 40 311
642 128 2560 2042 4482 892 1282 2562 5122 24 11 44
Resolution (px) Resolution (px)/ k Resolution (px) Sampling rate (k@/

Baseline O Pixels —-@— Ours X
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Visual Comparison




Visual Comparison

786.43 KB



Areas for improvement

Medical Images

* Can we make it competitive in and 3D volumes

terms of the rate-distortion-
complexity trade-off?

* How can we support a wider
range of specialized signals types
and modalities?

& HDR

* Can we decouple the “generative”
part of the decoding process to
make it optional?

Multi-channel & spatial audio ~



Even a single linear projection can be expensive

Dense 1 X 1 conv. layer o0 Linear projection complexity
s 8 — 1D
5 10 — 2D
£ 107 — 3D
Nin = (ZJ)D g
input dimension O
3 10°
o,
5 104
O
N 7 10°
Nyyt = —
out T R 102 4 . | | |
Latent dimension 2 4 6 8 10 12

Number of WPT levels
MACs = 22/ /R
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Lightweight, FFT-inspired structured operations

Dense 1 X 1 conv. layer Structured 1 X 1 conv. layer

=

2

: : v 5

: - : E

= S = =

= | S T
QL )

= =’ % <

|| L —

= Conv. with roups  Conv. with roups

N, = Output dimension \ e J2 8TO7P /

MACs = N¢ g1~ g2 ® \/ Cinput * 2? N¢ log No < MACs < N/
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Lightweight, FFT-inspired structured operations

Single dense matrix vs structured pair

10° 7 Encoder throughput vs BD-rate

B 108 — —601 LiVeAction ®

"c_c; E _50 4 493K Params.

g 107 S WalLoC

o ~ _40 A Cosmos 9.2K Params.

o 106 - 32M Params.

IS [

2 = 907

o 10° "

o, \ z —20 -

5 10 2

@) ©

O 5 —10 4

N 108 -

n = Y SR S JPEG 2000
104 5 15 50 150 400

Analysis transform throughput [MPix/s]

Number of WPT levels
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Asymmetric Design

Machine-
Sensor . Remote/Cloud
interpretable
v features -
valas < ML Applications
N | > Classification
0 Eirte. Segmentation
i, ' Enhancement
. :y " u Ll k : J

Oriial Signal

b Optional decoding |

Encoding efficiency Decoder can run on cloud Al supercomputers
is very important (or throw it away completely)




Improving the synthesis transform

* High complexity
synthesis transform is
tolerable at runtime

* Training should still be

possible in reasonable
number of GPU hours

* Support modalities with
high spatial and/or

temporal resolution

GFLOPs
~0000 11— ConvNeXt-B
I NFNet-FO/F1
3 ViT-B/16
15000 -
10000
5000 -
0 ] — T T T T T i
128 256 384 512 768 896 1024

Image size [px]

5000 -
4000 -
3000

2000

1000

=

0_4

Peak GPU mem w/o params [MB]

Z

128 256 384 512 768 896 1024

Image size [px]

Beyer, Lucas. "On the speed of ViTs and CNNs." (2024).
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ND-generalized ViT decoder with linear attention

* Global receptive field
- Exploit non-local redundancies

* No excessive compute requirements
—>Train at high resolution on single GPU

* No position encoding or batch norm
- Works for any modality

Mobile CPU Latency (ms)

200

160

120

80

40

0

4 Softmax Attention
-- RelU-based Linear Attention

.
4.5x
L faster
;
et
¥ 3T o
24 32 40

Input Feature Map Size

Cai, Han, et al. "Efficientvit: Lightweight multi-scale attention for high-resolution dense
prediction." Proceedings of the IEEE/CVF international conference on computer vision. 2023.
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LiVeAction Overview

* Can we make it competitive in
terms of the rate-distortion-
complexity trade-off?

* How can we support a wider
range of specialized signals types
and modalities?

 Simplified rate penalty

54



Rate objective

H(E())

latent rate

* Standard approach to optimize
H(E(x)) involves fitting a
continuous proxy distribution p,,

* Requires an auxiliary optimizer
with additional hyperparameters
and separate learning rate

Ballé, Jona, Valero Laparra, and Eero P. Simoncelli. "End-to-end Optimized Image
Compression." International Conference on Learning Representations. 2017.
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Simplified rate penalty

* Intensity of sub-band filter W
outputs follow
gaussian distry

in |lx — D((E(x)) ||2+Z(£(x)l—g(x)) y s o

MSE Distortion latent rate

* For exponent Subject to dim(E(x)) « dim(x) /M
minimizing va [
equivalent to minimizing rate e \\

0
-0 -40 -30 -20 -10 0 10 20 30 40 50

Sharifi, Karnran, and Alberto Leon-Garcia. "Estimation of shape parameter for generalized Gaussian distributions
in subband decompositions of video." IEEE Transactions on Circuits and Systems for Video Technology 5.1 (1995) 56



Compression efficiency and computational efficiency

ImageNet Accuracy

BD-Rate

LPIPS
BD-Rate

CPU
Throughput

SSIM
BD-Rate

GPU
Throughput

—— AVIF

—— Cosmos
—— LiVeAction

PSNR

BD-Rate
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Machine Perception

Accuracy vs Bitrate [ImageNet-1k] 045 Accuracy vs Bitrate [Audioset]

0.90 - 0.40 -

> 0.35 1

§ 0.85 - :

§ 0 a0 £ 0.30 -

< S 0.25 -

g ®

= 0.75 - 2 0.20 -

Q @

[

b 0.15 -

% 0.70 1 5

O —e— AVIF 0.10 A —e— Opus
0.65 A Cosmos 0.05 - EnCodec

—e— LiVeAction ' —e— LiVeAction
0.60 —————rt —— ] — 0.00 : ———y
103 104 10° 10* 10°

Bits used to represent input image Bits used to represent input audio



Other modalities

Spatial Audio 3D CT
CR CR

EnCodec
— LiVeAction

PSN PSNB

JPEG 2000
- LiVeAction

29%

WWorst

DR DR

Dec Dec
Hyperspectral Video
CR CR

JPEG 2000
— LiVeAction

PSN PSNBE

Cosmos DV
— LiVeAction

\Worst

DR DR

Dec Dec



Generative Enhancement

(b) Cosmos

(c) LiVeAction (d) LiVeAction + FLUX .
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[1] D. Jacobellis, D. Cummings, and N.J. Yadwadkar. "Machine Perceptual
Quality: Evaluating the Impact of Severe Lossy Compression on Audio and
Image Models.” Data Compression Conference. IEEE, 2024.

[2] D. Jacobellis and N.J. Yadwadkar."Learned Compression for Compressed
Learning.” Data Compression Conference. IEEE, 2025.

[3] D. Jacobellis and N.J. Yadwadkar. "LiVeAction: a Lightweight, Versatile, and
Asymmetric Neural Codec Design for Real-time Operation.” Under Review.

[4] D. Jacobellis, M. Ulhagq, F. Racapé, H. Choi, and N.]. Yadwadkar.” Dedelayed:
Deleting remote inference delay via on-device correction.” Under Review.



Software releases

Installation = pip install walloc

Audio~> Pre-

rained

COC

€C

Images—> Pre-

rained codec

Training (1D) = Tutorial

Training (2D) = Tutorial

More details available:
https://ut-sysml.org/walloc/

Contact: danjacobellis@utexas.edu



https://danjacobellis.net/walloc/train_stereo.html
https://danjacobellis.net/walloc/train_rgb.html
https://danjacobellis.net/walloc/audio_compression.html
https://danjacobellis.net/walloc/audio_compression.html
https://danjacobellis.net/walloc/audio_compression.html
https://danjacobellis.net/walloc/image_compression.html
https://danjacobellis.net/walloc/image_compression.html
https://danjacobellis.net/walloc/image_compression.html
https://ut-sysml.org/walloc/
https://ut-sysml.org/walloc/
https://ut-sysml.org/walloc/
mailto:danjacobellis@utexas.edu

Software releases

Installation = pip install livecodec

Dozen+ pre-trained codecs available on Hugging Face
https:/ /ht.co/danjacobellis/liveaction

Training = Tutorial

More details available:
https://ut-sysml.org/liveaction/

Contact: danjacobellis@utexas.edu
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https://ut-sysml.org/liveaction/train/lsdir_f8c48.html
https://hf.co/danjacobellis/liveaction
https://ut-sysml.org/liveaction/
https://ut-sysml.org/liveaction/
https://ut-sysml.org/liveaction/
mailto:danjacobellis@utexas.edu
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