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Why do we need compression?

7-channel spatial 
audio array

8MP
Front facing 

camera

2x eye tracking 
cameras

2x high FOV scene 
cameras

2.5 Watt-hour 
battery

IMU, barometer,
magnometer

30 Hours of 
recording on a 
single charge

projectaria.com

Modern sensor hardware provides incredible power efficiency

74 Mbits/sec
36 Mbits/sec

6 Mbits/sec

200 Mbits/sec

High resolution signals are too large to process on device or transmit to the cloud
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Generative Compression

Learned Compression

Linear Transform coding
LossyLossless

Bits back coding

Huffman

ANS

Arithmetic

Golomb

JPEG 2000

WEBP

Stable Diffusion

Cosmos

JPEG-AI

Resolution Reduction

Scalar quantization

Vector quantization

JPEG

AV1

NNCP

Types of compression systems
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● Most of the bits that move across 
the internet today use linear 
transform coding (e.g. JPEG, AV1)

● These codecs use energy 
compacting transforms (e.g. DCT) 
to create a sparse representation

● Bits are allocated to different 
components using models of 
human perception

● Exploit sparsity via entropy 
coding (RLE, huffman, etc) 

Linear transform coding
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Learned compression using neural networks

Sonehara, et al. "Image data compression using a neural network model.“
International 1989 Joint Conference on Neural Networks. IEEE, 1989.

Learn the transform and quantizer from representative data

Poor computational efficiencyHigh compression efficiency
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OriginalJPEG Neural Network

198:1 218:1

64 parameters

<500 MACs/pixel >100k MACs/pixel

Millions of Parameters

Compression efficiency vs computational efficiency
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● Autoencoder will struggle 
to preserve details, texture 
and high frequencies 

● Use a generative model 
to resynthesize the details

Generative compression
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Who is the perceiver?

We need machine-oriented compression systems
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Legacy transform codec Modern transform codec Generative AutoencoderMSE Autoencoder

90:1 160:1 160:1 900:1 

Perceptual quality

Human perceptual quality is well modeled (e.g. LPIPS)

What about machine perception for specific applications?

LPIPS=7.0 LPIPS=7.9 LPIPS=10.8LPIPS=6.1

<
Human

<
Human

<
Human

?? ?



Machine perceptual quality

Does the high human perceptual quality of generative 
codecs translate to high machine perceptual quality?

Yes; generative codecs often provide better downstream 

performance than conventional methods at lower rates

Equivalent to 
using a 30× 

smaller model

15%

CosmosOriginal (0.1 MP) AVIF

2.5× 104 bits2.5× 106 bits 3.1× 104 bits
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Legacy transform coding

Modern transform coding

MSE-optimized autoencoder

Generative compression

How could lossy compression increase performance?

Datasets used to pre-train foundation models use legacy 
JPEG and MPEG compression at default settings

High quality, lossless samples are out of distribution!

Does lossy compression always hurt accuracy?

Pristine, high resolution inputs
11



Denoising effect of lossy compression
Legacy transform 

coding (JPEG)Original
Modern transform 

coding (WEBP)
Generative 

model (HiFiC)
MSE-optimized  

Autoencoder
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101 102 104 105

Battey capacity (Watt-hours)

How much power is available for sensing?

Mobile, remote, and wearable sensors produce constant streams of high resolution signals

Sensor efficiency is increasing, while ML models get more expensive

Solution: divide computation between sensor and cloud
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Dec.Enc.

Lossy reconstructionOriginal Signal

Compression for mobile and remote sensing

ML Applications

Classification

Enhancement

Segmentation

Mobile, remote, and wearable sensors produce constant streams of high resolution signals

Sensor efficiency is increasing, while ML models get more expensive

Solution: divide computation between sensor and cloud

Sensor Remote/Cloud

Degrades
accuracy

Demands high 
compression ratio

Adds decoding 
overhead 14



Enc.

Original Signal

ML Applications

Classification

Enhancement

Segmentation

Mobile, remote, and wearable sensors produce constant streams of high resolution signals

Sensor efficiency is increasing, while ML models get more expensive

Solution: divide computation between sensor and cloud

Sensor Remote/Cloud

Machine-oriented compression

Machine-
interpretable

features

Optional decoding

Enhanced accuracyLess bandwidth More efficient ML
15



Enc.

Original Signal

ML Applications

Classification

Enhancement

Segmentation

Sensor Remote/Cloud

Machine-oriented compression

Machine-
interpretable

features

Optional decoding

Enhanced accuracyLess bandwidth More efficient ML

What are ideal characteristics of the compression system?
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Machine-oriented compression

What are ideal characteristics of the compression system?

• Hyperspectral

• Support many modalities
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Machine-oriented compression

What are ideal characteristics of the compression system?

• Spatial Audio

• Hyperspectral

• Support many modalities
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Machine-oriented compression

What are ideal characteristics of the compression system?

• Spatial Audio

• 3D volumes, 
medical images

• Hyperspectral

• Support many modalities
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Less bandwidth

Machine-
interpretable

features

Machine-oriented compression

What are ideal characteristics of the compression system?

ML Applications

Classification

Enhancement

Segmentation

Remote/Cloud

Optional decoding

Enhanced accuracy More efficient ML
20

Enc.

Sensor

Original Signal

• Support many modalities • Allow efficient encoding



Machine-oriented compression

What are ideal characteristics of the compression system?

Original Stable Diff. VAE

Generative models synthesize details

For recognition, we must preserve details

21

• Support many modalities • Preserve details• Allow efficient encoding



Machine-oriented compression

What are ideal characteristics of the compression system?

Machine-
interpretable

features

ML Applications

Classification

Enhancement

Segmentation

Remote/Cloud

Optional decoding

Enhanced accuracy More efficient ML

Enc.

Sensor

Original Signal

Less bandwidth
22

• Support many modalities • Preserve details• Allow efficient encoding

• Achieve high compression rate



Less bandwidth

Sensor

Enc.

Original Signal

Machine-oriented compression

What are ideal characteristics of the compression system?

ML Applications

Remote/Cloud

Optional decoding

Enhanced accuracy More efficient ML

Machine-
interpretable

features

Classification

Enhancement

Segmentation

ML Applications

23

• Support many modalities • Preserve details• Allow efficient encoding

• Achieve high compression rate • Accelerate downstream ML models



Enc.

Original Signal

ML Applications

Classification

Enhancement

Segmentation

Sensor Remote/Cloud

Machine-oriented compression

Machine-
interpretable

features

Optional decoding

Enhanced accuracyLess bandwidth More efficient ML

• Support many modalities

What are ideal characteristics of the compression system?

• Preserve details• Allow efficient encoding

• Achieve high compression rate • Accelerate downstream ML models
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RR LTC E2ELC GenAE Goal

Allow efficient encoding

Accelerate downstream ML

Achieve high compression rate

Preserve details

Support many modalities

Resample Stable Diff. VAEWEBP DGML (Cheng2020)

Comparison of existing codec designs
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Proposed design

Encoding efficiency

Forgo expensive DNN-based 
analysis transform; leverage 
efficient, separable transform for 
energy compaction instead 
(wavelet packet decomposition)

Inspired by linear 
transform coding
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Wavelet packet transform
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WPT exchanges spatial resolution with channels

Energy compactionNo information loss
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Forgo expensive DNN-based 
analysis transform; leverage 
efficient, separable transform for 
energy compaction instead 
(wavelet packet decomposition)

Encoding efficiency

Inspired by linear 
transform coding

Proposed design

Dimension reduction

Don’t rely exclusively on 
sparsity; use channel bottleneck 
to provide guaranteed, uniform 
dimensionality reduction to 
accelerate downstream models

Inspired by 
generative 

autoencoders
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Autoencoder for dimension reduction

“High-Resolution Image Synthesis with Latent Diffusion Models”
(aka “Stable Diffusion”)  Rombach et al. 2021

Throughput

Im
ag

e 
Q

u
al

it
y

More compressive AE → lower dimension

2×

Spatial compression

4×

8×

16×

32×

1×

30

Lower dimension → higher throughput

When increasing the degree of compression, 
throughput improves more than quality drops



Autoencoder for dimension reduction

“High-Resolution Image Synthesis with Latent Diffusion Models”
(aka “Stable Diffusion”)  Rombach et al. 2021 31

48× lower dimension

34M param. DNN

113× more expensive than WEBP



Does the encoder need to be so expensive?

Patch size 3×16×16

Sequence Len 196

Embedding Dim 768

Compression 1:1

Accuracy 86.1

Patch size 3×32×32

Sequence Len. 49

Embedding Dim 768

Compression 4:1

Accuracy 83.3

ViT-B/32

ViT-B/16

“An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale” (aka “ViT”) Beyer et al. 2021

Discarding details is easy

→Use a simple encoder (e.g. linear projection)

Synthesizing details is hard
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Forgo expensive DNN-based 
analysis transform; leverage 
efficient, separable transform for 
energy compaction instead 
(wavelet packet decomposition)

Dimension reductionEncoding efficiency

Inspired by linear 
transform coding

Don’t rely exclusively on 
sparsity; use channel bottleneck 
to provide guaranteed, uniform 
dimensionality reduction to 
accelerate downstream models

Inspired by 
generative AEs

Proposed design

Compression ratio

Inspired by E2E 
learned compression

Guarantee resilience to 
quantization via additive noise 
during training. Leverage 
existing lossless codecs as a 
compression multiplier.

float→int8
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CompandingLearnable analysis 
transform (linear)

Entropy 
bottleneck
(training)

Learnable synthesis 
transform (DNN)

Decompanding

𝒢A
෩𝐗 = 𝐖෩𝐗 + 𝐛

Φ 𝐳

𝐳

ො𝐳

Φ−1 ො𝐳

Φ 𝐳 + 𝒰 Entropy coding
& file load/store

𝒢S

𝒢S ො𝐳 = ℓ𝐿 ∘ ℓ𝐿−1 ∘ ⋯
ℓ𝑖 = 𝜎 𝐖𝑖 ො𝐳𝑖 + 𝐛𝑖

𝒢A

⋮

Entropy bottleneck 
(compression)

float→int8

E2E learned compression: quantization and entropy coding
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Guarantee resilience to 
quantization via additive noise 
during training. Leverage 
existing lossless codecs as a 
compression multiplier.

Forgo expensive DNN-based 
analysis transform; leverage 
efficient, separable transform for 
energy compaction instead 
(wavelet packet decomposition)

Dimension reductionEncoding efficiency

Inspired by linear 
transform coding

Don’t rely exclusively on 
sparsity; use channel bottleneck 
to provide guaranteed, uniform 
dimensionality reduction to 
accelerate downstream models

Inspired by 
generative AEs

Proposed design

Compression ratio

float→int8

35

Inspired by E2E 
learned compression

WaLLoC: Wavelet Learned Lossy Compression



Wavelet packet 
analysis

Wavelet packet 
synthesis

ො𝐱 = IWPT ෡෩𝐗

෩𝐗 = WPT 𝐱

Learnable analysis 
transform (linear)

Learnable synthesis 
transform (DNN)

𝒢A
෩𝐗 = 𝐖෩𝐗 + 𝐛

𝒢S

𝒢S ො𝐳 = ℓ𝐿 ∘ ℓ𝐿−1 ⋯
ℓ𝑖 = 𝜎 𝐖𝑖 ො𝐳𝑖 + 𝐛𝑖

𝒢A

WaLLoC workflow

Dimension reduction Compression ratioEncoding efficiency

Entropy coding
& file load/store

⋮

Entropy bottleneck 
(compression)

float→int8Entropy 
bottleneck
(training)

Φ 𝐳 + 𝒰
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RR LTC E2ELC GenAE Goal

Allow efficient encoding

Accelerate downstream ML

Achieve high compression rate

Preserve details

Support many modalities

Resample Stable Diff. VAEWEBP DGML (Cheng2020)

How to avoid the pitfalls of generative autoencoders?
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38

ℒ 𝑥, ො𝑥 = MSE 𝑥, ො𝑥

Loss function

ො𝑥 = decode encode 𝑥 + 𝒰

ℒ 𝑥, ො𝑥 = MSE LPF 𝑥 , LPF{ ො𝑥}
Pooled MSE

(does not penalize high frequencies)

+ ℒLPIPS 𝑥, ො𝑥
Lerned perceptual

patch similarity

+ ℒGAN 𝑥, ො𝑥
Adversarial loss using
VGG16 discriminator

“Training VQGAN and VAE, with detailed explanation”
S. Ryu, 2024.  github.com/cloneofsimo/vqgan-training

Requires pre-trained models 
specific to RGB images

Only preserves low 
frequency details

Better preservation of high 
frequency details

Supports a wide range of 
modalities 

github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training
github.com/cloneofsimo/vqgan-training


Comparison of autoencoder designs (RGB image)

Distortion 
(PSNR)

Compression 
Ratio

Dimension 
Reduction

Throughput
(MPixels/sec)

Perceptual 
Quality 
(DISTS)

WaLLoC low (Ours)

Stable Diff. 3

DGML (Cheng2020)

WaLLoC high (Ours)
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Comparison of autoencoder designs (stereo audio)

WaLLoC low (ours)

Stable Audio

EnCodec

WaLLoC high (ours)

Distortion 
(SDR)

Compression 
Ratio

Dimension 
Reduction

Throughput
(MSamples/sec)

Spatial
Quality
(SSDR)
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Image Classification

Cat

Document Understanding

Colorization

Q: What is the date         
mentioned in the 
second table?

A: [ “05-12-92” ] 

41

Source Separation

How does it perform on downstream applications?



Comparison vs. resolution reduction

2562

Image classification

25

75

A
cc

u
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cy
 (

%
)

642 1282 

Resolution (px)

50

Document analysis

A
cc

u
ra

cy
 (

A
N

L
S

)

89622242 4482

Resolution (px)

80

40

60

Reduced resolution & reduced computation
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Baseline Resample

4× lower latency

21GB→8GB GPU Mem

85% → 44% Accuracy



Comparison vs. resolution reduction

43

Baseline Larger patches

3.0

2.0

2.5
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Image colorization Source separation
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S

N
R
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d

B
) 

↑

442.4 11

33

32
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34

Sampling rate (kHz) 

Increased resolution & fixed computation

Diminishing return of 
larger patches / filters



Comparison vs. resolution reduction
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Pixels
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Baseline Ours



786 KB

Visual Comparison

6 KB

JPEGOriginal
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786.43 KB 5.5 KB

Original WaLLoC

Visual Comparison
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Hyperspectral
& HDR

Medical Images 
and 3D volumes

Multi-channel & spatial audio

Video

Areas for improvement

• Can we make it competitive in 
terms of the rate-distortion-
complexity trade-off?

• How can we support a wider 
range of specialized signals types 
and modalities?

• Can we decouple the “generative” 
part of the decoding process to 
make it optional?
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Even a single linear projection can be expensive

MACs = 22𝐽𝐷/R

𝑁in = 2𝐽 𝐷

input dimension

𝑁out =
𝑁in

R
Latent dimension

Dense 𝟏 × 𝟏 conv. layer
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Conv. with 𝑔2 groups

A
ct

iv
at

io
n

Conv. with 𝑔1 groups
𝑁

𝑐
=

𝑔
1

⋅𝑔
2
 

𝑔1 ≈ 𝑔2 ≈ 𝐶input ⋅ 2𝐽⋅𝐷

Lightweight, FFT-inspired structured operations

MACs = 𝑁𝐶
2

𝑁
𝑐

=
In

p
u

t 
d

im
en

si
o

n

𝑁𝑐 = Output dimension

Structured 𝟏 × 𝟏 conv. layerDense 𝟏 × 𝟏 conv. layer

𝑁𝐶  log 𝑁𝐶 ≤ MACs ≤ 𝑁𝐶
3/2
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Conv. with 𝑔2 groups

A
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iv
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n

Conv. with 𝑔1 groups
𝑁

𝑐
=

𝑔
1

⋅𝑔
2
 

𝑔1 ≈ 𝑔2 ≈ 𝐶input ⋅ 2𝐽⋅𝐷 ,  𝑁𝐶  log 𝑁𝐶 ≤ MACs ≤ 𝑁𝐶
3/2

Lightweight, FFT-inspired structured operations

MACs = 𝑂(𝑁𝐶
2)

𝑁
𝑐

=
In

p
u

t 
d

im
en

si
o

n

𝑁𝑐 = Output dimension

Structured 𝟏 × 𝟏 conv. layerDense 𝟏 × 𝟏 conv. layer
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Enc.

Original Signal

ML Applications

Classification

Enhancement

Segmentation

Sensor Remote/CloudMachine-
interpretable

features

Optional decoding

Asymmetric Design 

Encoding efficiency 
is very important

Decoder can run on cloud AI supercomputers 
(or throw it away completely)
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Improving the synthesis transform

Beyer, Lucas. "On the speed of ViTs and CNNs."  (2024).

• High complexity 
synthesis transform is 
tolerable at runtime

• Training should still be 
possible in reasonable 
number of GPU hours

• Support modalities with 
high spatial and/or 
temporal resolution
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ND-generalized ViT decoder with linear attention

• Global receptive field

→Exploit non-local redundancies

• No excessive compute requirements

→Train at high resolution on single GPU

• No position encoding or batch norm

→ Works for any modality

Cai, Han, et al. "Efficientvit: Lightweight multi-scale attention for high-resolution dense 
prediction." Proceedings of the IEEE/CVF international conference on computer vision. 2023.
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• FFT-like structured 
matrix operations in 
encoder

• ND-generalized vision 
transformer decoder 
with linear attention

• Simplified rate penalty

• MSE loss + Generative 
enhancement

LiVeAction Overview

• Can we make it competitive in 
terms of the rate-distortion-
complexity trade-off?

• How can we support a wider 
range of specialized signals types 
and modalities?

• Can we decouple the “generative” 
part of the decoding process to 
make it optional?
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Rate objective

Ballé, Jona, Valero Laparra, and Eero P. Simoncelli. "End-to-end Optimized Image 
Compression." International Conference on Learning Representations. 2017.

min
 ℰ,𝒟

𝑥 − 𝒟((ℰ 𝑥 ) 2

MSE Distortion

+ 𝐻(ℰ 𝑥 )
latent rate

• Standard approach to optimize 
𝐻(ℰ 𝑥 ) involves fitting a 
continuous proxy distribution 𝑝𝑦𝑖

• Requires an auxiliary optimizer 
with additional hyperparameters 
and separate learning rate
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Simplified rate penalty

• Intensity of sub-band filter 
outputs follow generalized 
gaussian distribution  (GGD) 
for natural signals

• Empirically, outputs of DNN 
analysis transform also follow 
GGD

• For exponential family, 
minimizing variance is 
equivalent to minimizing rate

Sharifi, Karnran, and Alberto Leon-Garcia. "Estimation of shape parameter for generalized Gaussian distributions 
in subband decompositions of video." IEEE Transactions on Circuits and Systems for Video Technology 5.1 (1995)

Simplied training objective

min
 ℰ,𝒟

𝑥 − 𝒟((ℰ 𝑥 ) 2

MSE Distortion

+ ∑ ℰ 𝑥 𝑖 − ℰ 𝑥
2

latent rate

Subject to dim ℰ 𝑥 ≪ dim(𝑥)
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PSNR
BD-Rate

SSIM
BD-Rate

CPU
Throughput

ImageNet Accuracy
BD-Rate

LPIPS
BD-Rate

GPU
Throughput

Compression efficiency and computational efficiency

Cosmos

AVIF

LiVeAction
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Machine Perception



Other modalities



(b) Cosmos(a) Original

(d) LiVeAction + FLUX(c) LiVeAction

Generative Enhancement

60



Publications

[1] D. Jacobellis, D. Cummings, and N.J. Yadwadkar. "Machine Perceptual 
Quality: Evaluating the Impact of Severe Lossy Compression on Audio and 
Image Models.“ Data Compression Conference. IEEE, 2024.

[2] D. Jacobellis and N.J. Yadwadkar."Learned Compression for Compressed 
Learning.“ Data Compression Conference. IEEE, 2025.

[3] D. Jacobellis and N.J. Yadwadkar. "LiVeAction: a Lightweight, Versatile, and 
Asymmetric Neural Codec Design for Real-time Operation.“ Under Review.

[4] D. Jacobellis, M. Ulhaq, F. Racapé, H. Choi, and N.J. Yadwadkar.“ Dedelayed: 
Deleting remote inference delay via on-device correction.“ Under Review.



Software releases

Training (1D) → Tutorial 

Installation → pip install walloc

Training (2D) → Tutorial 

Audio→ Pre-trained codec

Images→ Pre-trained codec

More details available:
https://ut-sysml.org/walloc/

62

Contact: danjacobellis@utexas.edu

https://danjacobellis.net/walloc/train_stereo.html
https://danjacobellis.net/walloc/train_rgb.html
https://danjacobellis.net/walloc/audio_compression.html
https://danjacobellis.net/walloc/audio_compression.html
https://danjacobellis.net/walloc/audio_compression.html
https://danjacobellis.net/walloc/image_compression.html
https://danjacobellis.net/walloc/image_compression.html
https://danjacobellis.net/walloc/image_compression.html
https://ut-sysml.org/walloc/
https://ut-sysml.org/walloc/
https://ut-sysml.org/walloc/
mailto:danjacobellis@utexas.edu


Software releases

Installation → pip install livecodec

Training → Tutorial 

Dozen+ pre-trained codecs available on Hugging Face
https://hf.co/danjacobellis/liveaction

More details available:
https://ut-sysml.org/liveaction/

63

Contact: danjacobellis@utexas.edu

https://ut-sysml.org/liveaction/train/lsdir_f8c48.html
https://hf.co/danjacobellis/liveaction
https://ut-sysml.org/liveaction/
https://ut-sysml.org/liveaction/
https://ut-sysml.org/liveaction/
mailto:danjacobellis@utexas.edu
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