

Machine Oriented Compression

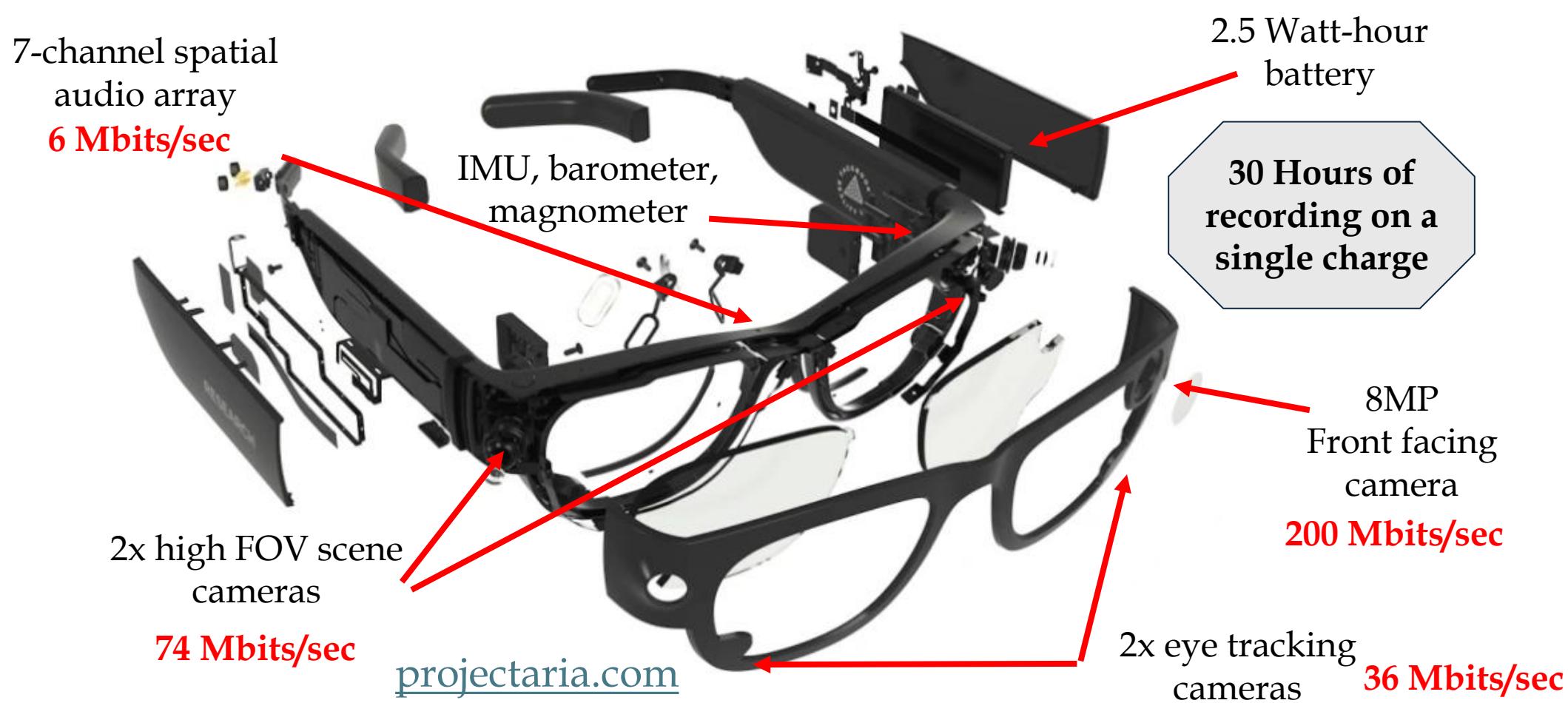
Dan Jacobellis

TEXAS

The University of Texas at Austin

Why do we need compression?

Modern sensor hardware provides incredible power efficiency



High resolution signals are too large to process on device or transmit to the cloud

Types of compression systems

Lossless

Huffman
ANS
Arithmetic
Golomb

Linear Transform coding

JPEG 2000
WEBP
JPEG
AV1

Lossy

Resolution Reduction
Scalar quantization
Vector quantization

Learned Compression

NNCP

JPEG-AI

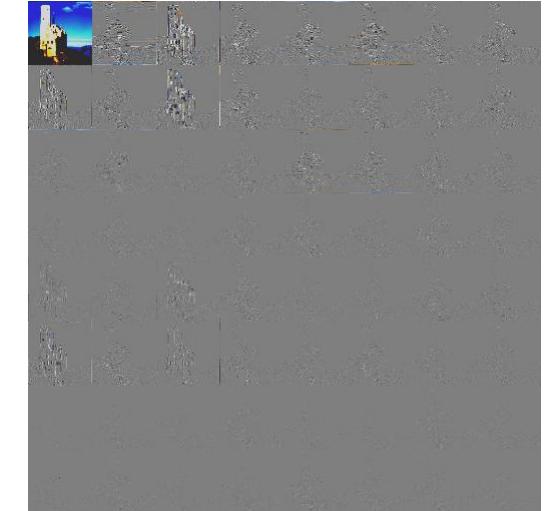
Generative Compression

Bits back coding

Stable Diffusion
Cosmos

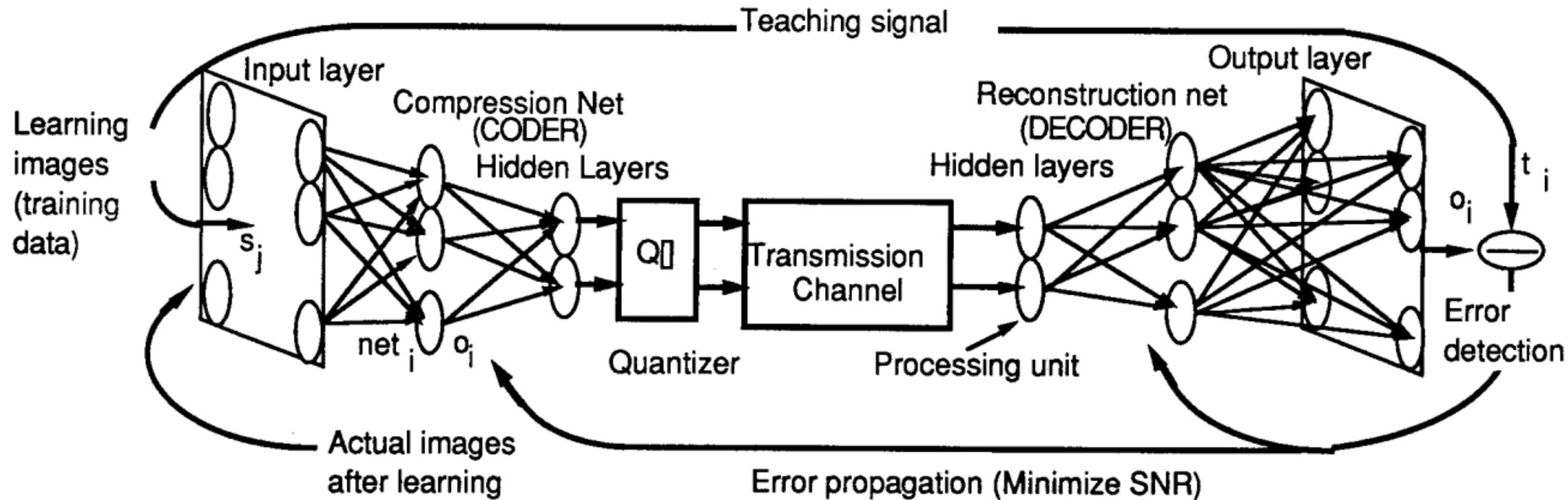
Linear transform coding

- Most of the bits that move across the internet today use linear transform coding (e.g. JPEG, AV1)
- These codecs use energy compacting transforms (e.g. DCT) to create a sparse representation
- Bits are allocated to different components using models of human perception
- Exploit sparsity via entropy coding (RLE, huffman, etc)


$$\begin{bmatrix} 52 & 55 & 61 & 66 & 70 & 61 & 64 & 73 \\ 63 & 59 & 55 & 90 & 109 & 85 & 69 & 72 \\ 62 & 59 & 68 & 113 & 144 & 104 & 66 & 73 \\ 63 & 58 & 71 & 122 & 154 & 106 & 70 & 69 \\ 67 & 61 & 68 & 104 & 126 & 88 & 68 & 70 \\ 79 & 65 & 60 & 70 & 77 & 68 & 58 & 75 \\ 85 & 71 & 64 & 59 & 55 & 61 & 65 & 83 \\ 87 & 79 & 69 & 68 & 65 & 76 & 78 & 94 \end{bmatrix}$$
$$\begin{bmatrix} -26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\ 0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\ -3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\ -3 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

0	-1	1	-3	2	-4	-2	5	-6	-26
1	000	001	010	011	010	010	011	011	011

Learned compression using neural networks



Learn the transform and quantizer from representative data

High compression efficiency

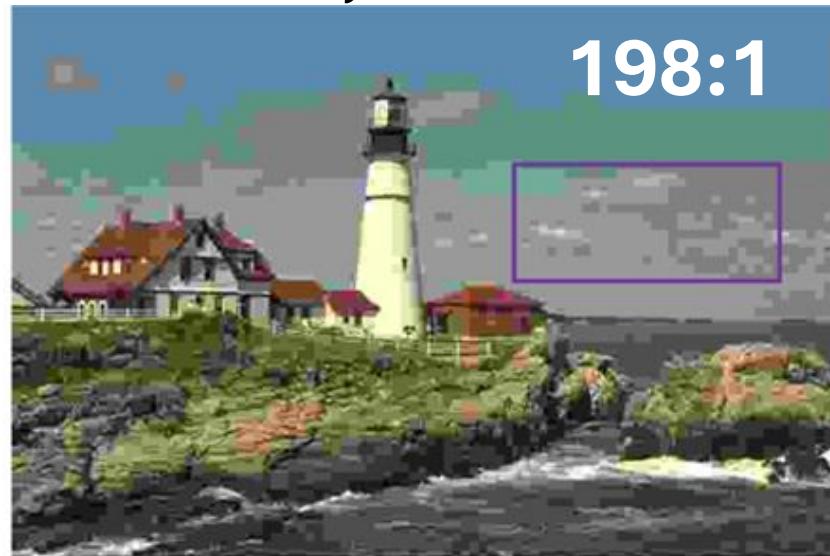
Poor computational efficiency

Sonehara, et al. "Image data compression using a neural network model." *International 1989 Joint Conference on Neural Networks*. IEEE, 1989.

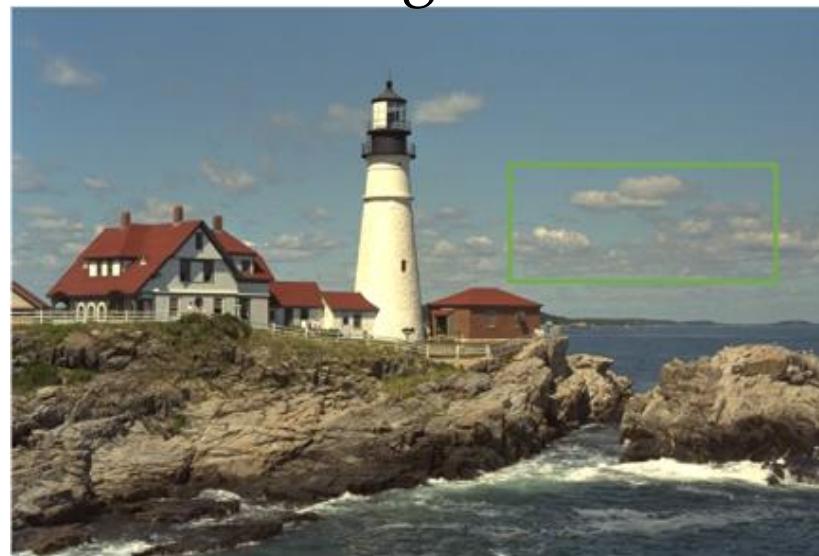
Compression efficiency vs computational efficiency

JPEG

198:1



Original



Neural Network



64 parameters

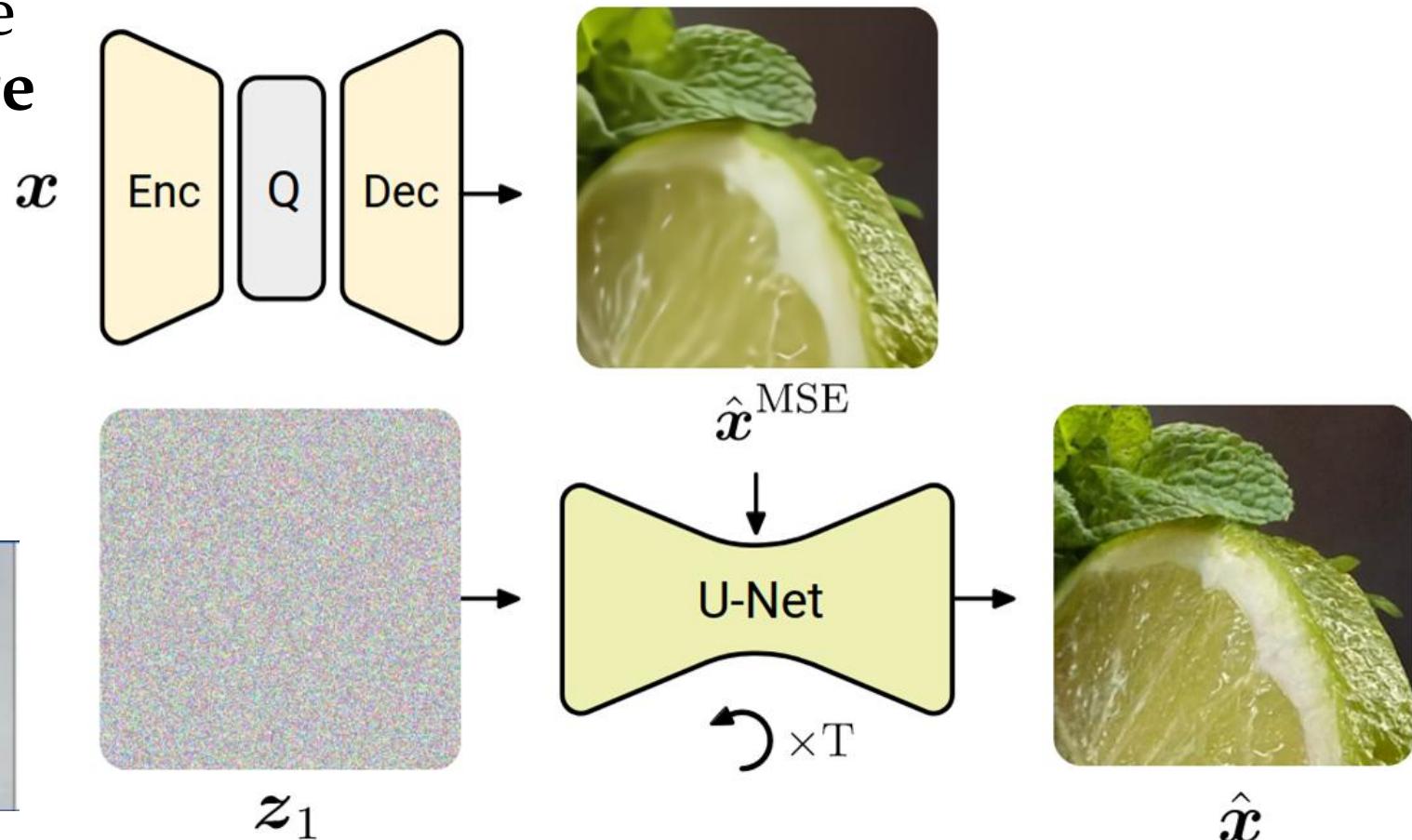
<500 MACs/pixel

Millions of Parameters

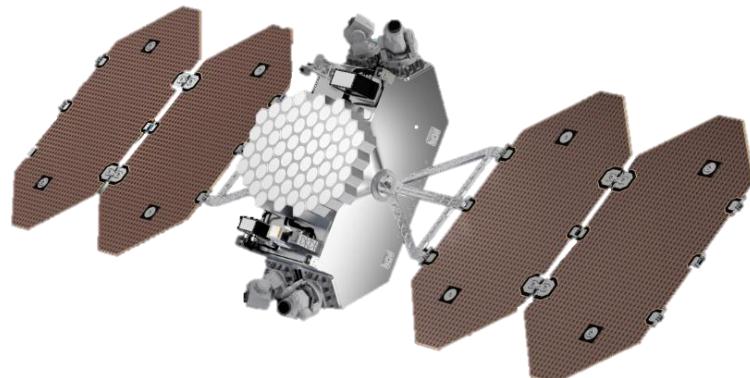
>100k MACs/pixel

Generative compression

- Autoencoder will struggle to preserve **details, texture and high frequencies**
- Use a **generative model** to resynthesize the details



Who is the perceiver?



We need machine-oriented compression systems

Perceptual quality

Legacy transform codec

Human <

Modern transform codec

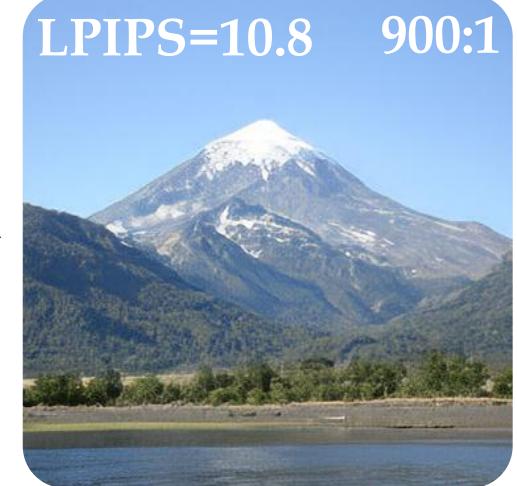


Human <

MSE Autoencoder

Human <

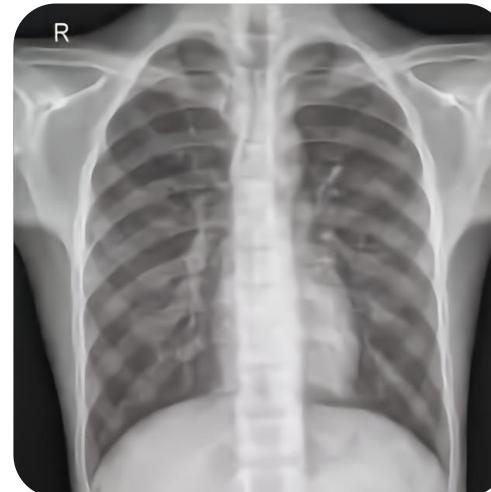
Generative Autoencoder



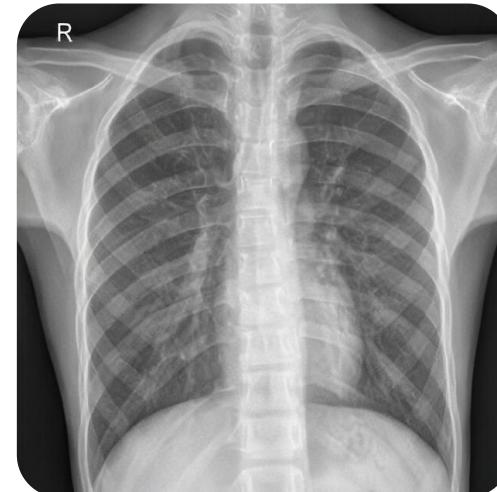
Human perceptual quality is well modeled (e.g. LPIPS)
What about machine perception for specific applications?

?

?



?



Machine perceptual quality

Original (0.1 MP)

AVIF

Cosmos

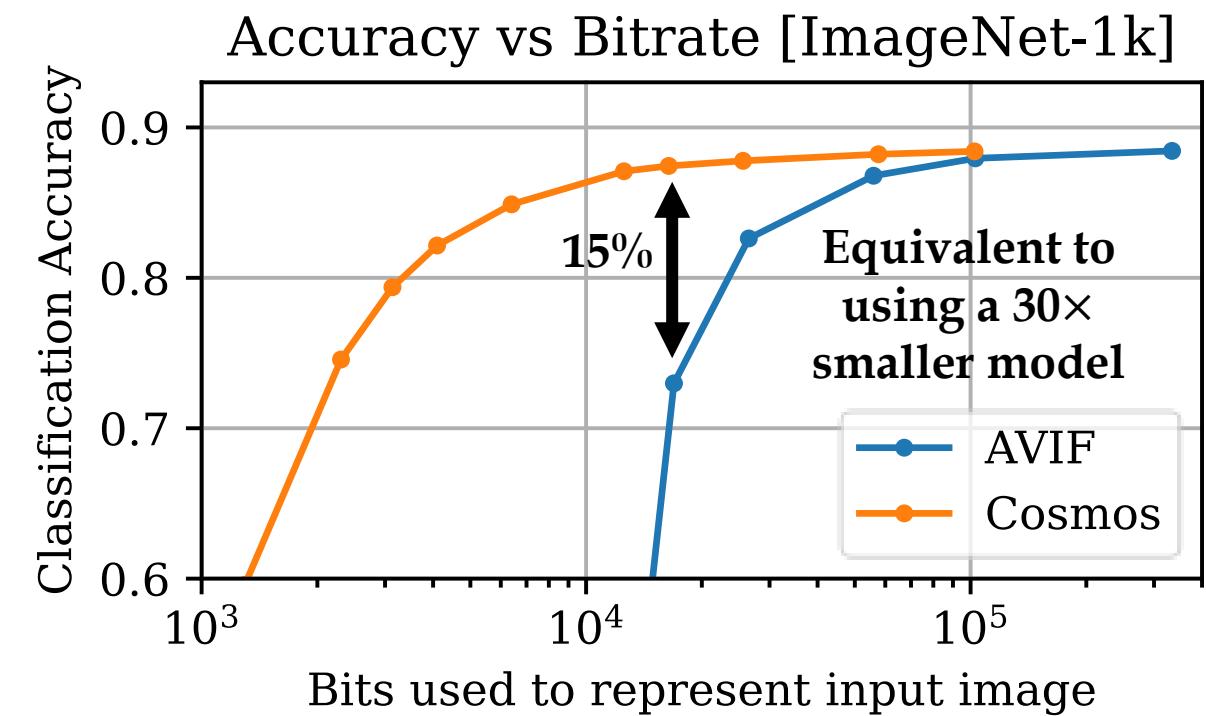
2.5×10^6 bits

3.1×10^4 bits

2.5×10^4 bits

Does the high human perceptual quality of generative codecs translate to high machine perceptual quality?

Yes; generative codecs often provide **better downstream performance** than conventional methods at **lower rates**



Does lossy compression always hurt accuracy?

How could lossy compression *increase* performance?

Datasets used to pre-train foundation models use legacy JPEG and MPEG compression at default settings

High quality, lossless samples are **out of distribution!**

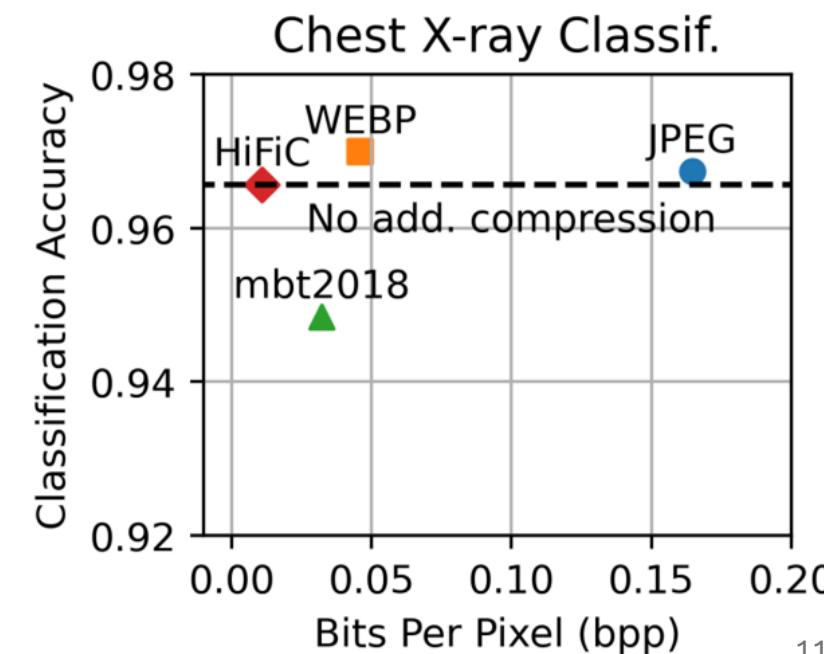
Pristine, high resolution inputs

Legacy transform coding

Modern transform coding

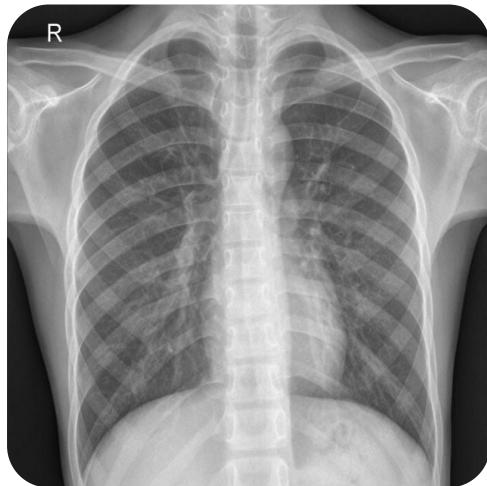
MSE-optimized autoencoder

Generative compression



Denoising effect of lossy compression

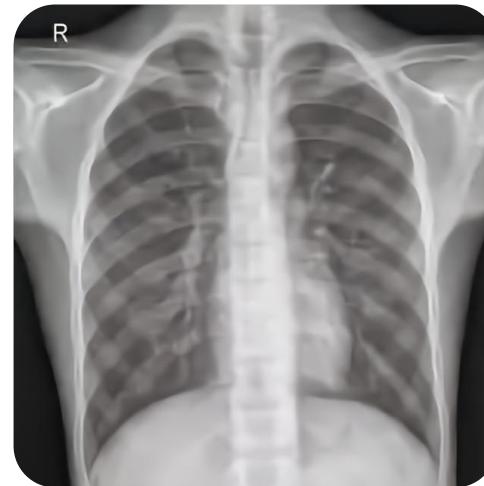
Original



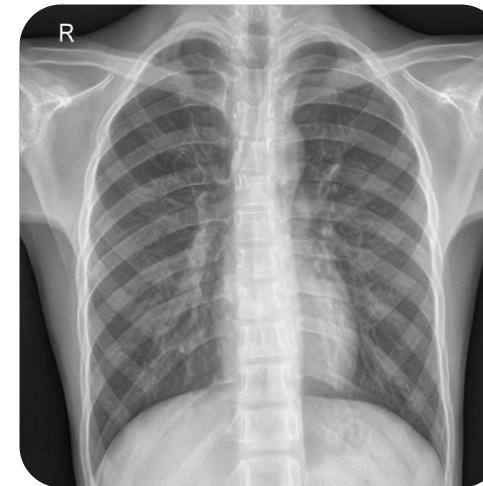
Legacy transform
coding (JPEG)

Modern transform
coding (WEBP)

MSE-optimized
Autoencoder



Generative
model (HiFiC)

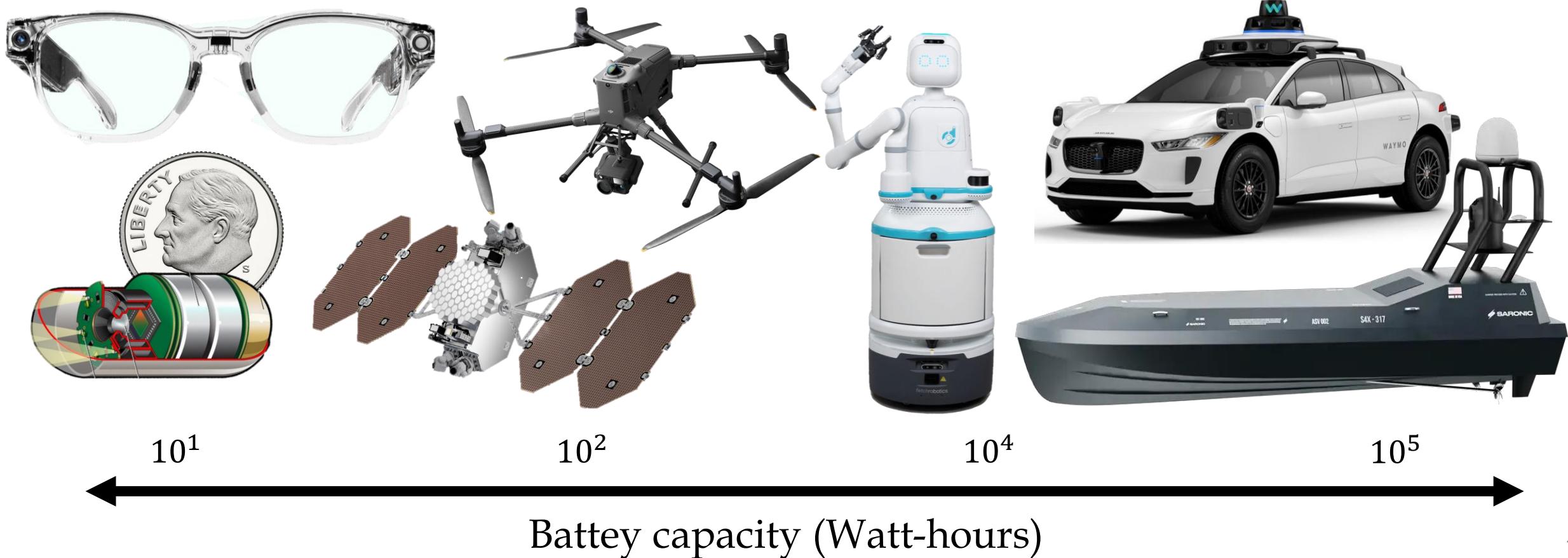


How much power is available for sensing?

Mobile, remote, and wearable sensors produce constant streams of **high resolution** signals

Sensor efficiency is increasing, while ML models get more expensive

Solution: divide computation between sensor and cloud



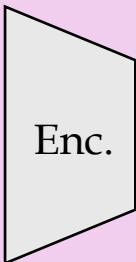
Compression for mobile and remote sensing

Mobile, remote, and wearable sensors produce constant streams of **high resolution** signals

Sensor efficiency is increasing, while ML models get more expensive

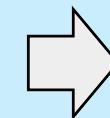
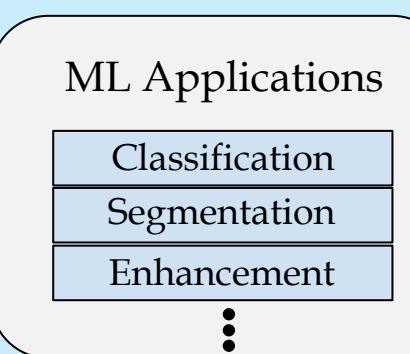
Solution: divide computation between sensor and cloud

Sensor



Original Signal

Remote/Cloud



Lossy reconstruction

Demands high compression ratio

Degrades accuracy

Adds decoding overhead

Machine-oriented compression

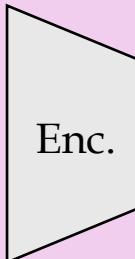
Mobile, remote, and wearable sensors produce constant streams of **high resolution** signals

Sensor efficiency is increasing, while ML models get more expensive

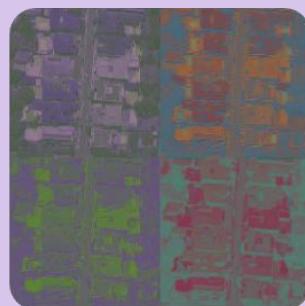
Solution: divide computation between sensor and cloud

Sensor

Original Signal



Machine-
interpretable
features



Remote/Cloud

ML Applications

- Classification
- Segmentation
- Enhancement
- ⋮

Optional decoding

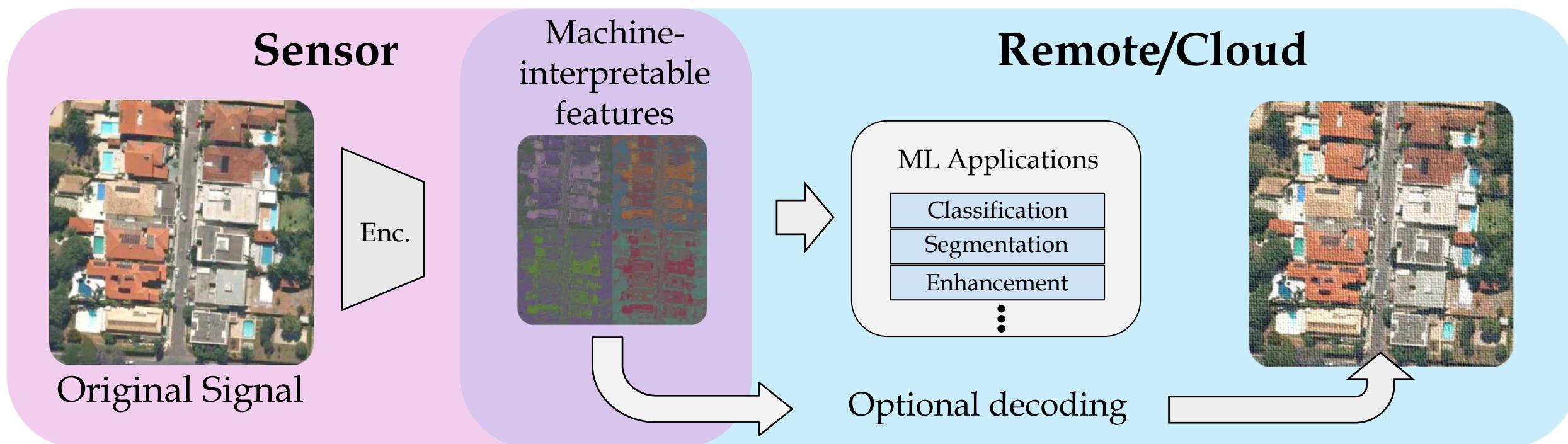
Less bandwidth

Enhanced accuracy

More efficient ML

Machine-oriented compression

What are ideal characteristics of the compression system?



Less bandwidth

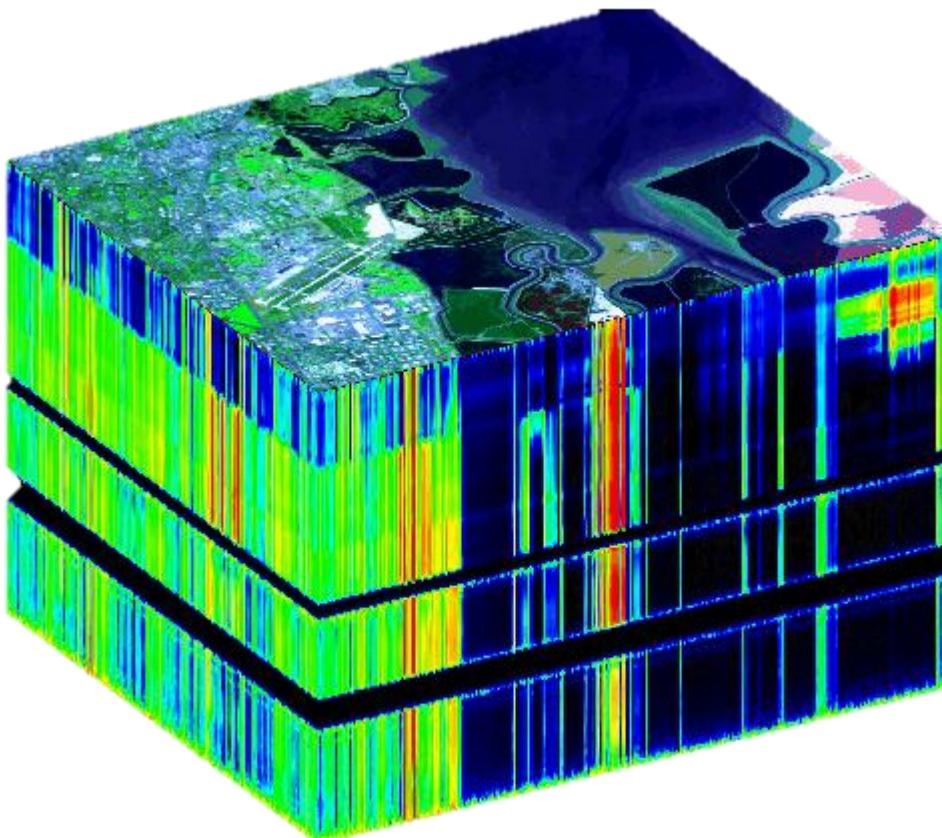
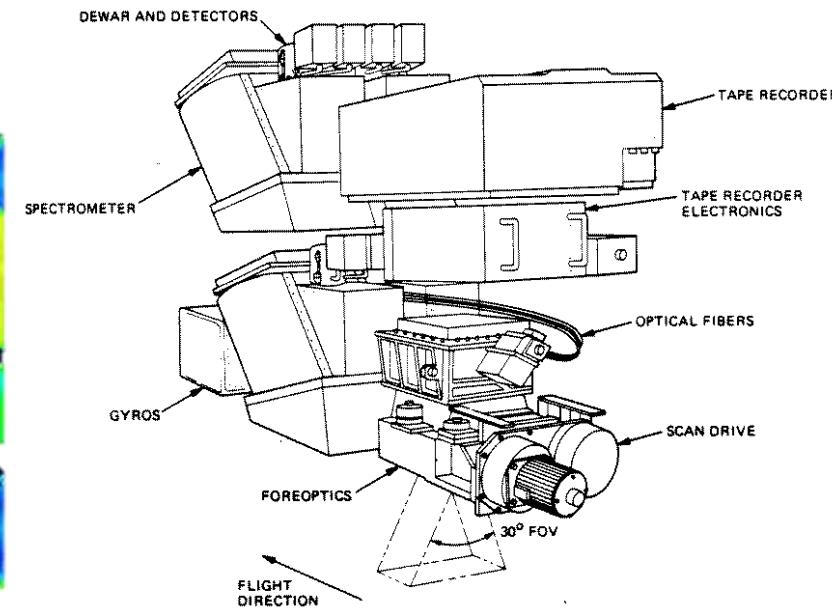
Enhanced accuracy

More efficient ML

Machine-oriented compression

What are ideal characteristics of the compression system?

- Support many modalities
- Hyperspectral

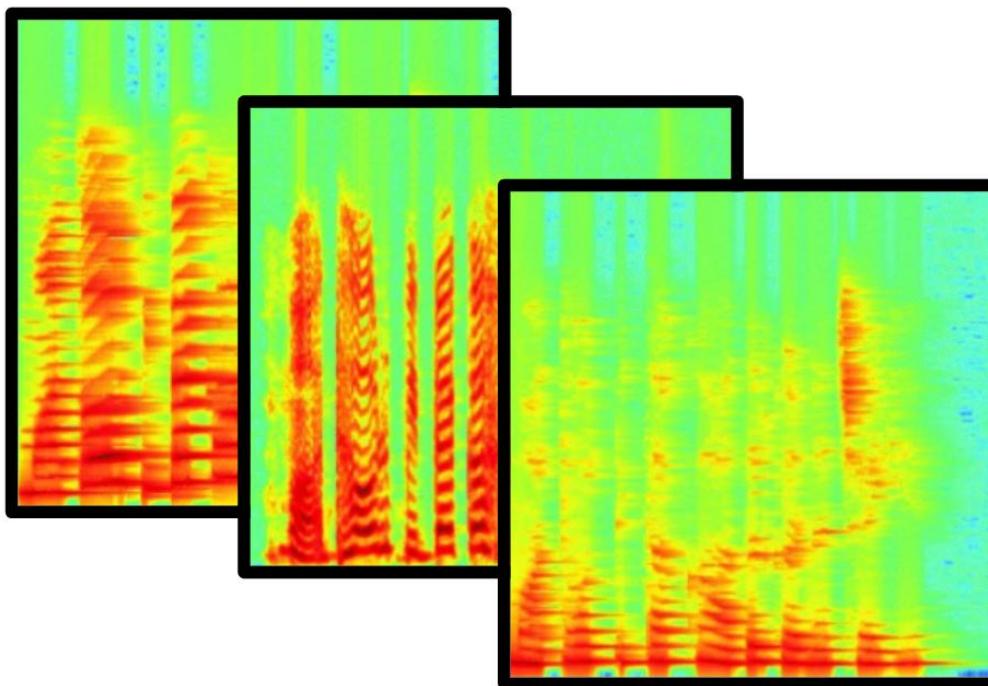
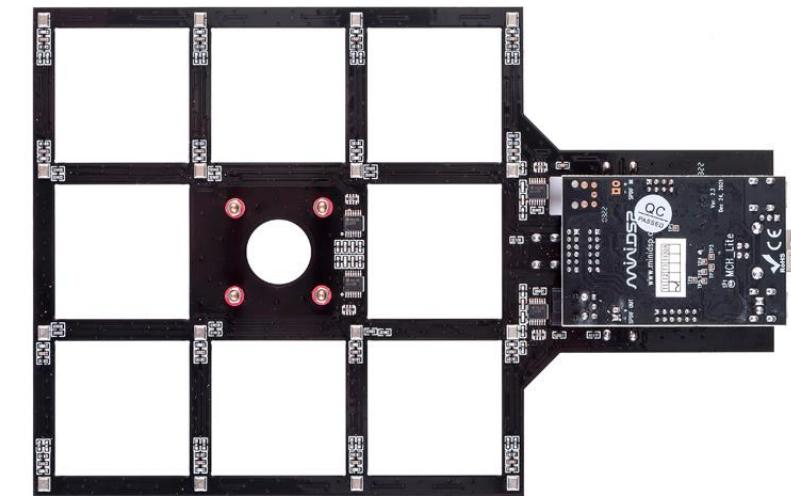


Machine-oriented compression

What are ideal characteristics of the compression system?

- Support many modalities

- Hyperspectral
- Spatial Audio

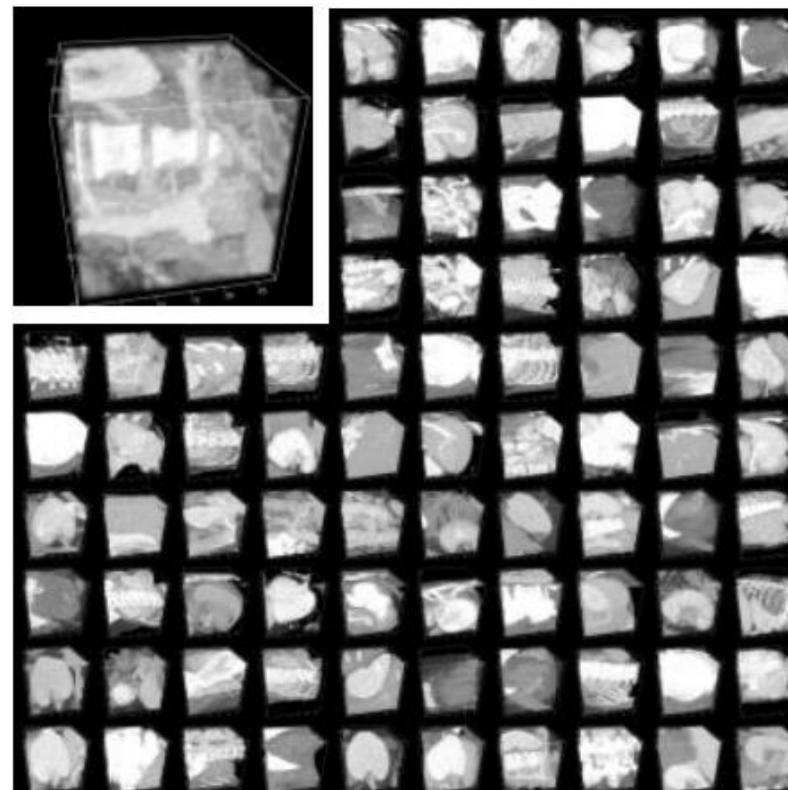


Machine-oriented compression

What are ideal characteristics of the compression system?

- Support many modalities

- Hyperspectral
- Spatial Audio
- 3D volumes,
medical images

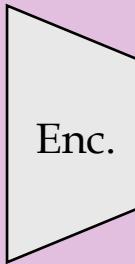


Machine-oriented compression

What are ideal characteristics of the compression system?

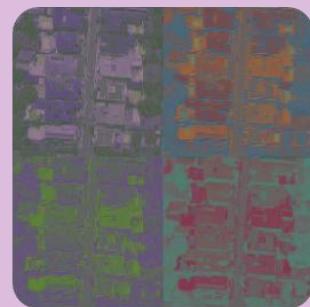
- Support many modalities
- **Allow efficient encoding**

Sensor



Original Signal

Machine-
interpretable
features



Remote/Cloud

ML Applications

- Classification
- Segmentation
- Enhancement
- ⋮

Optional decoding

Less bandwidth

Enhanced accuracy

More efficient ML

Machine-oriented compression

What are ideal characteristics of the compression system?

- Support many modalities
- Allow efficient encoding
- **Preserve details**

Generative models synthesize details
For recognition, we must **preserve** details

Original

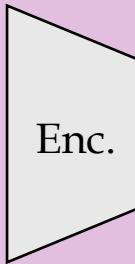
Stable Diff. VAE

Machine-oriented compression

What are ideal characteristics of the compression system?

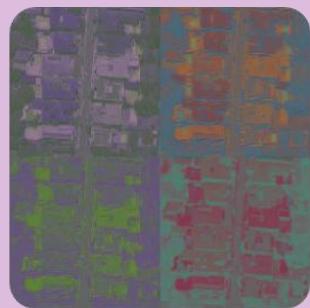
- Support many modalities
- Allow efficient encoding
- Preserve details
- **Achieve high compression rate**

Sensor



Original Signal

Machine-
interpretable
features

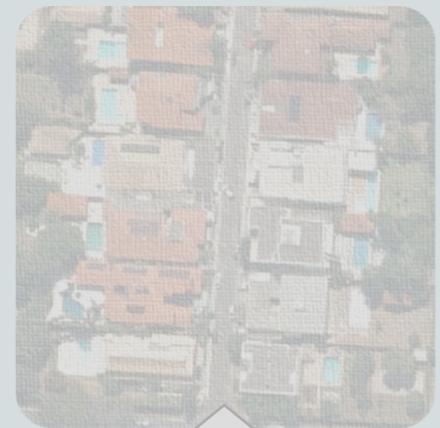


Remote/Cloud

ML Applications

- Classification
- Segmentation
- Enhancement
- ⋮

Optional decoding



Less bandwidth

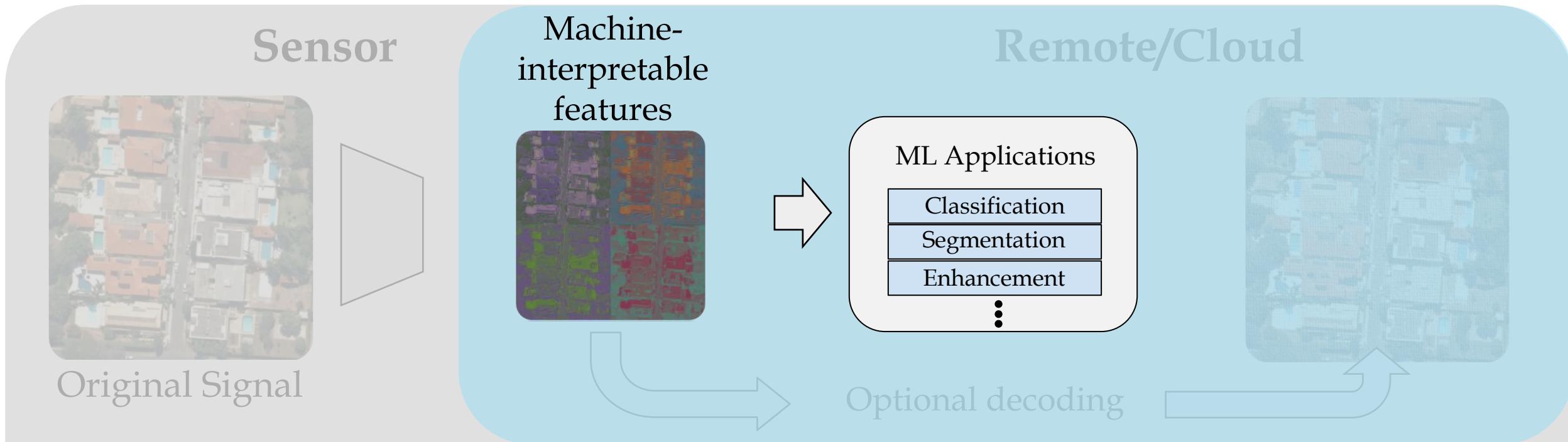
Enhanced accuracy

More efficient ML

Machine-oriented compression

What are ideal characteristics of the compression system?

- Support many modalities
- Allow efficient encoding
- Preserve details
- Achieve high compression rate
- **Accelerate downstream ML models**



Less bandwidth

Enhanced accuracy

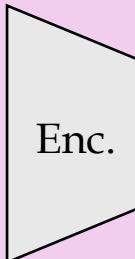
More efficient ML

Machine-oriented compression

What are ideal characteristics of the compression system?

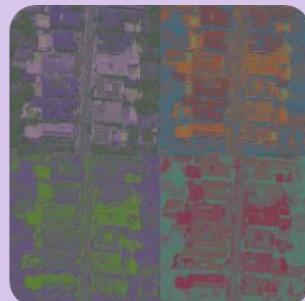
- Support many modalities
- Achieve high compression rate
- Allow efficient encoding
- Accelerate downstream ML models
- Preserve details

Sensor



Original Signal

Machine-interpretable features



Remote/Cloud

ML Applications

- Classification
- Segmentation
- Enhancement

Optional decoding

Less bandwidth

Enhanced accuracy

More efficient ML

Comparison of existing codec designs

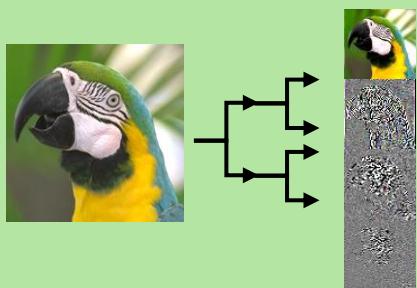
	RR	LTC	E2ELC	GenAE	Goal
Allow efficient encoding	✓	✓	✗	✗	✓
Accelerate downstream ML	✓	✗	✗	✓	✓
Achieve high compression rate	✗	✓	✓	✗	✓
Preserve details	✗	✓	✓	✗	✓
Support many modalities	✓	✗	✓	✗	✓

Proposed design

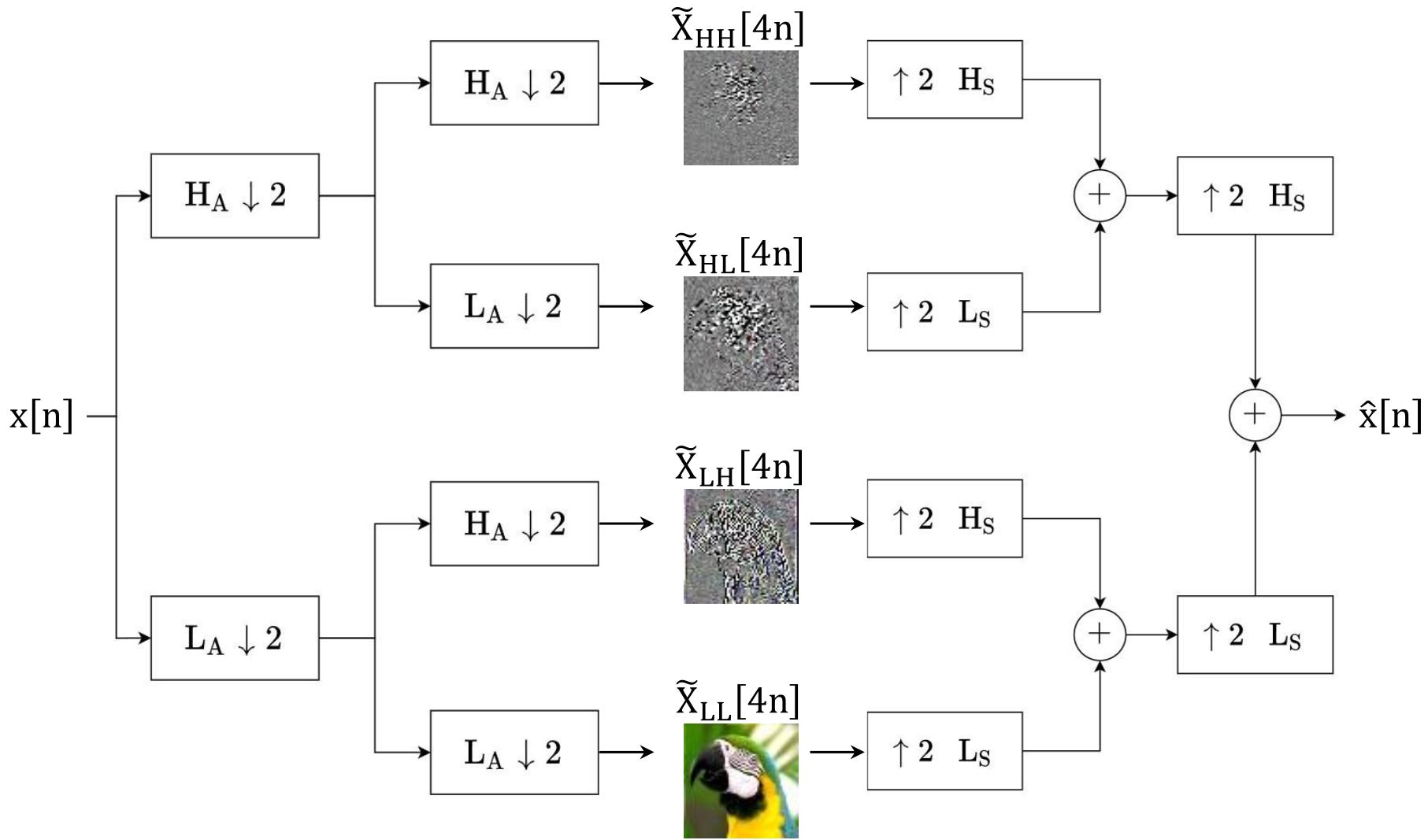
Encoding efficiency

Inspired by linear transform coding

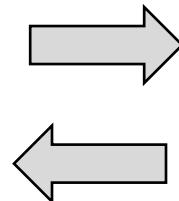
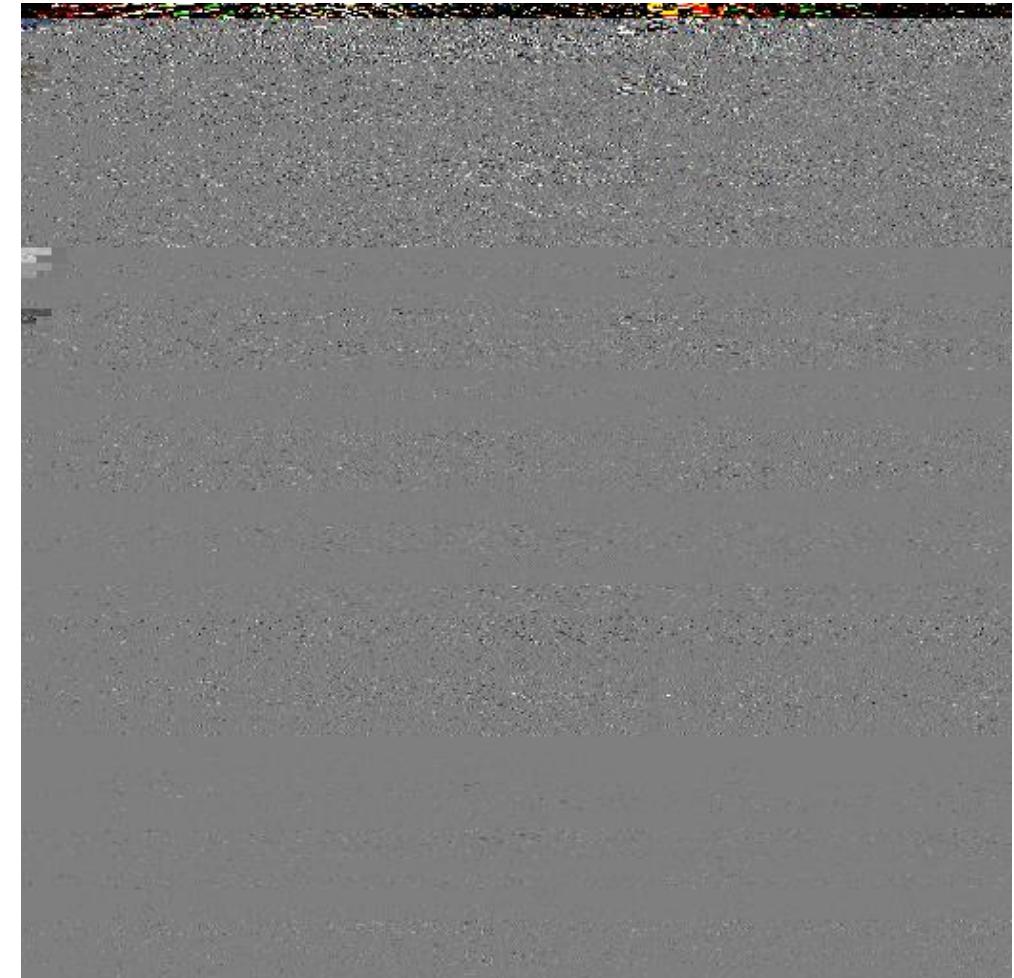
Forgo expensive DNN-based analysis transform; leverage efficient, separable transform for energy compaction instead (wavelet packet decomposition)



Wavelet packet transform



WPT exchanges spatial resolution with channels



No information loss

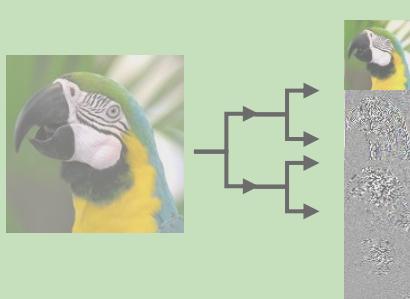
Energy compaction

Proposed design

Encoding efficiency

Inspired by linear transform coding

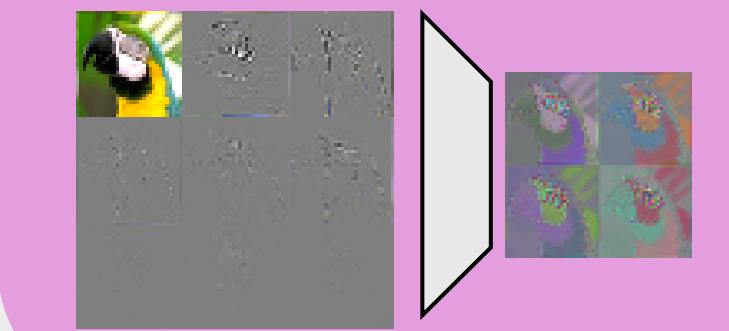
Forgo expensive DNN-based analysis transform; leverage efficient, separable transform for energy compaction instead (wavelet packet decomposition)



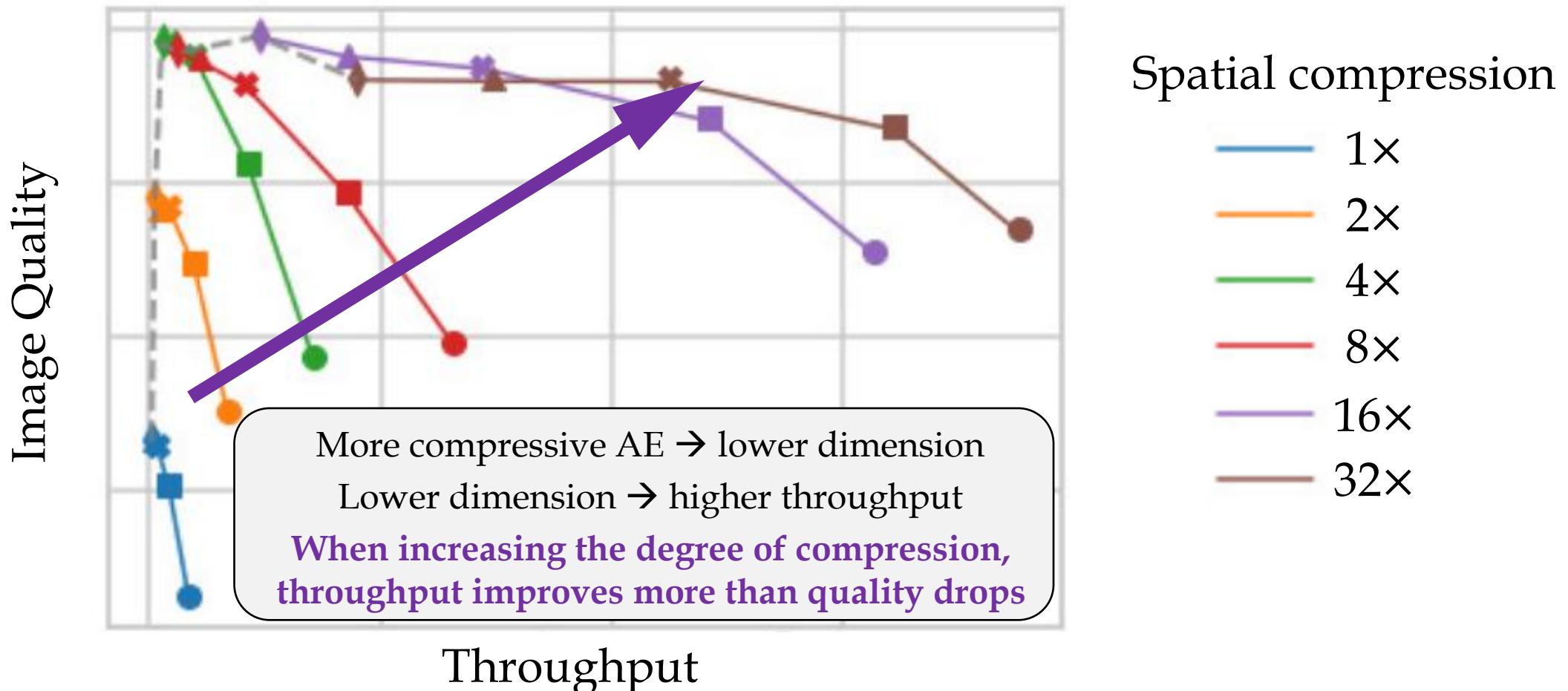
Dimension reduction

Inspired by generative autoencoders

Don't rely exclusively on sparsity; use channel bottleneck to provide guaranteed, uniform dimensionality reduction to accelerate downstream models



Autoencoder for dimension reduction



“High-Resolution Image Synthesis with Latent Diffusion Models”
(aka “Stable Diffusion”) Rombach et al. 2021

Autoencoder for dimension reduction



Original Image

$(3 \times 512 \times 512)$

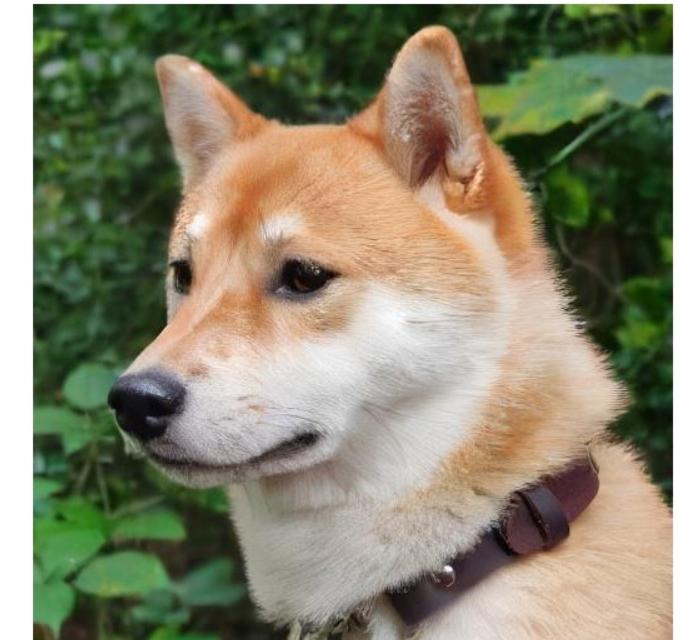
48× lower dimension

113× more expensive than WEBP

34M param. DNN

Encoder
(Lossy)

Decoder
(Generative)



Decoded Image

$(3 \times 512 \times 512)$

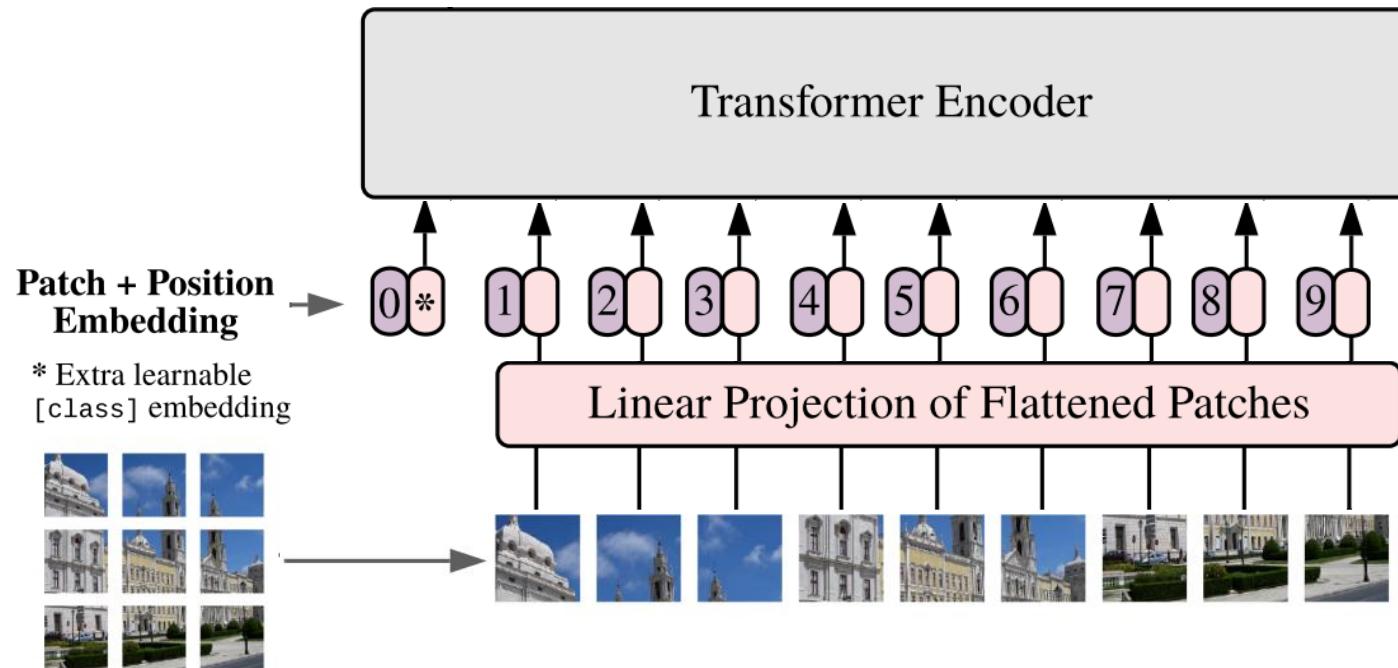
“High-Resolution Image Synthesis with Latent Diffusion Models”
(aka “Stable Diffusion”) Rombach et al. 2021

Does the encoder need to be so expensive?

Synthesizing details is hard

Discarding details is easy

→ Use a simple encoder (e.g. linear projection)



"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" (aka "ViT") Beyer et al. 2021

ViT-B/16

Patch size	$3 \times 16 \times 16$
Sequence Len	196
Embedding Dim	768
Compression	1:1
Accuracy	86.1

ViT-B/32

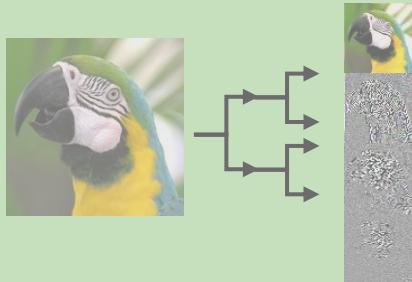
Patch size	$3 \times 32 \times 32$
Sequence Len.	49
Embedding Dim	768
Compression	4:1
Accuracy	83.3

Proposed design

Encoding efficiency

Inspired by linear transform coding

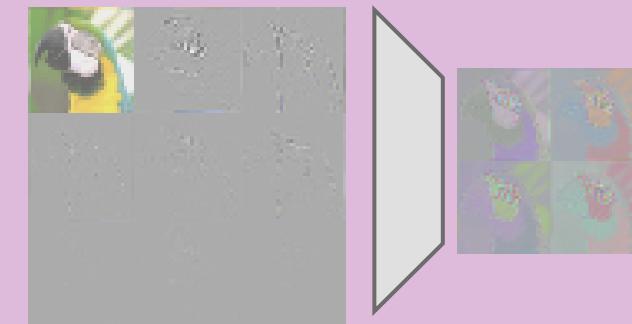
Forgo expensive DNN-based analysis transform; leverage efficient, separable transform for energy compaction instead (wavelet packet decomposition)



Dimension reduction

Inspired by generative AEs

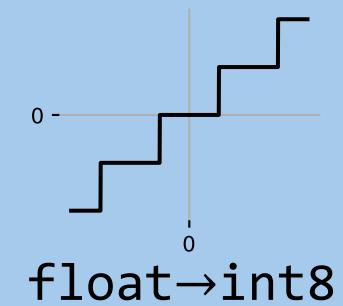
Don't rely exclusively on sparsity; use channel bottleneck to provide guaranteed, uniform dimensionality reduction to accelerate downstream models



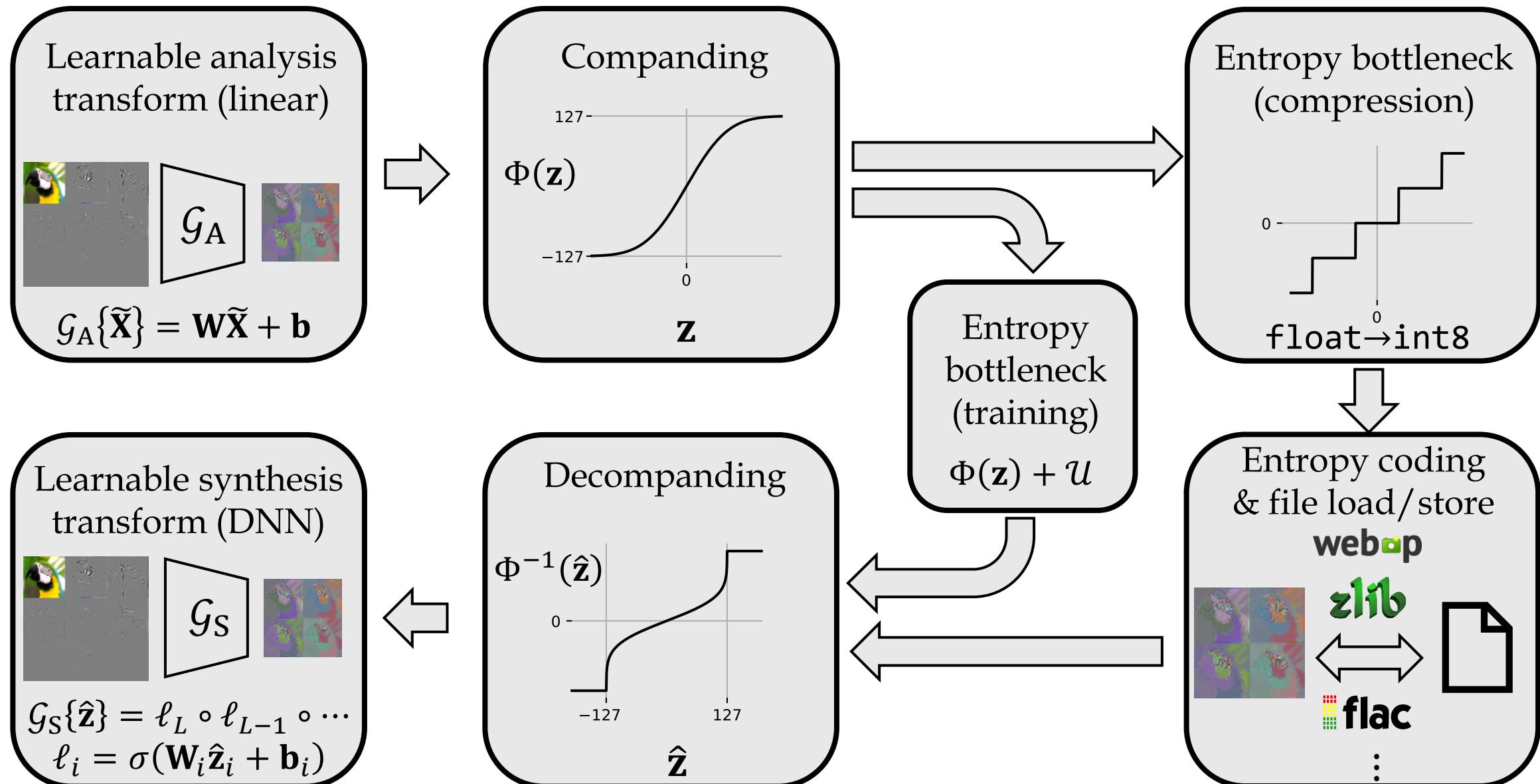
Compression ratio

Inspired by E2E learned compression

Guarantee resilience to quantization via additive noise during training. Leverage existing lossless codecs as a compression multiplier.



E2E learned compression: quantization and entropy coding

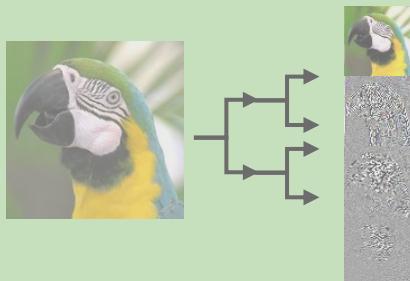


Proposed design

Encoding efficiency

Inspired by linear transform coding

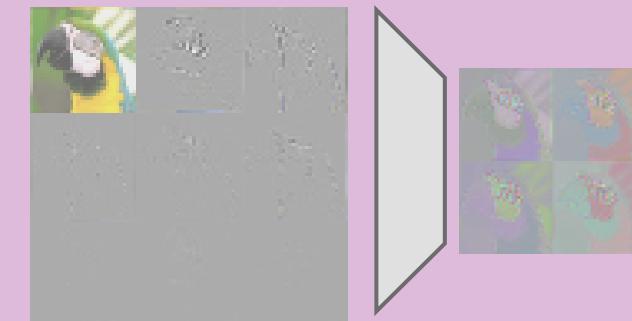
Forgo explicit analysis and efficiency for energy compaction instead (wavelet packet decomposition)



Dimension reduction

Inspired by generative AEs

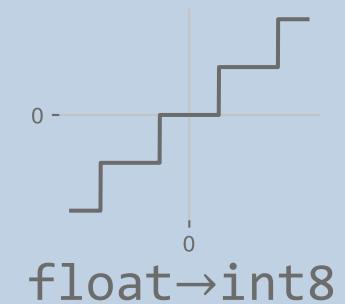
Dimensionality reduction to accelerate downstream models



Compression ratio

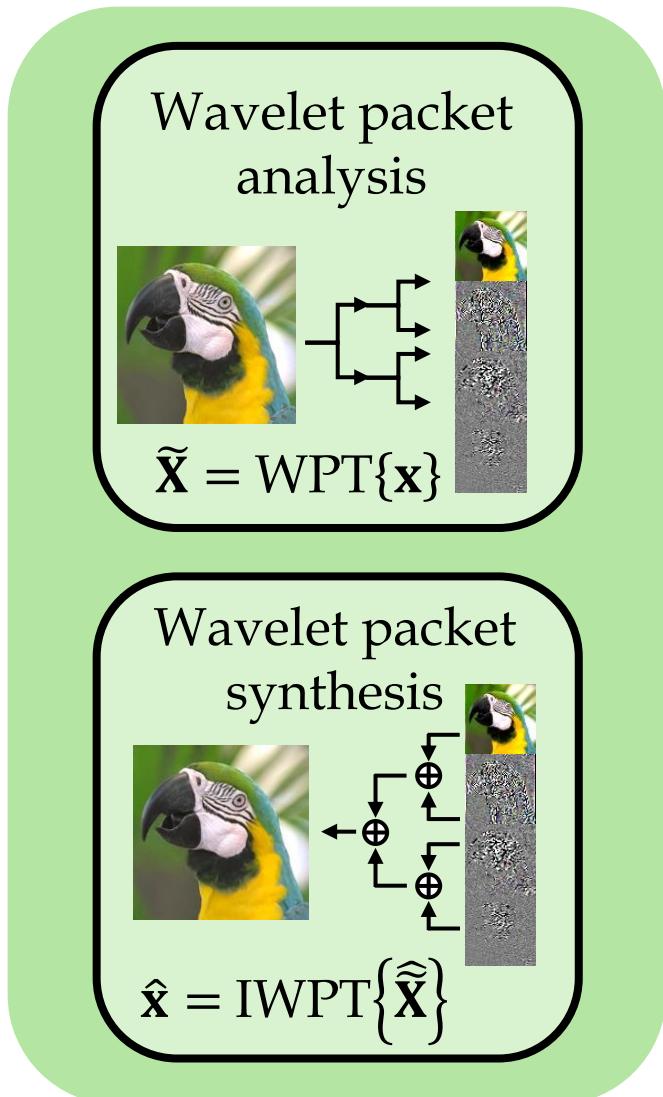
Inspired by E2E learned compression

existing lossless codecs as a compression multiplier.

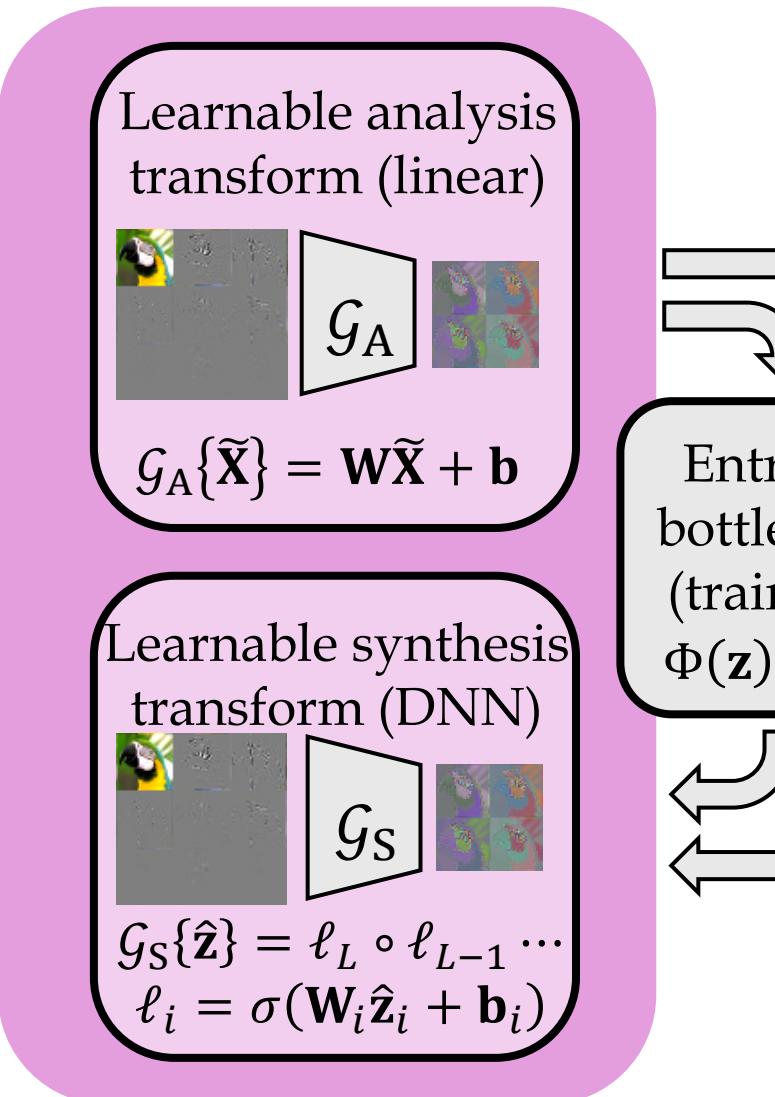


WaLLoC workflow

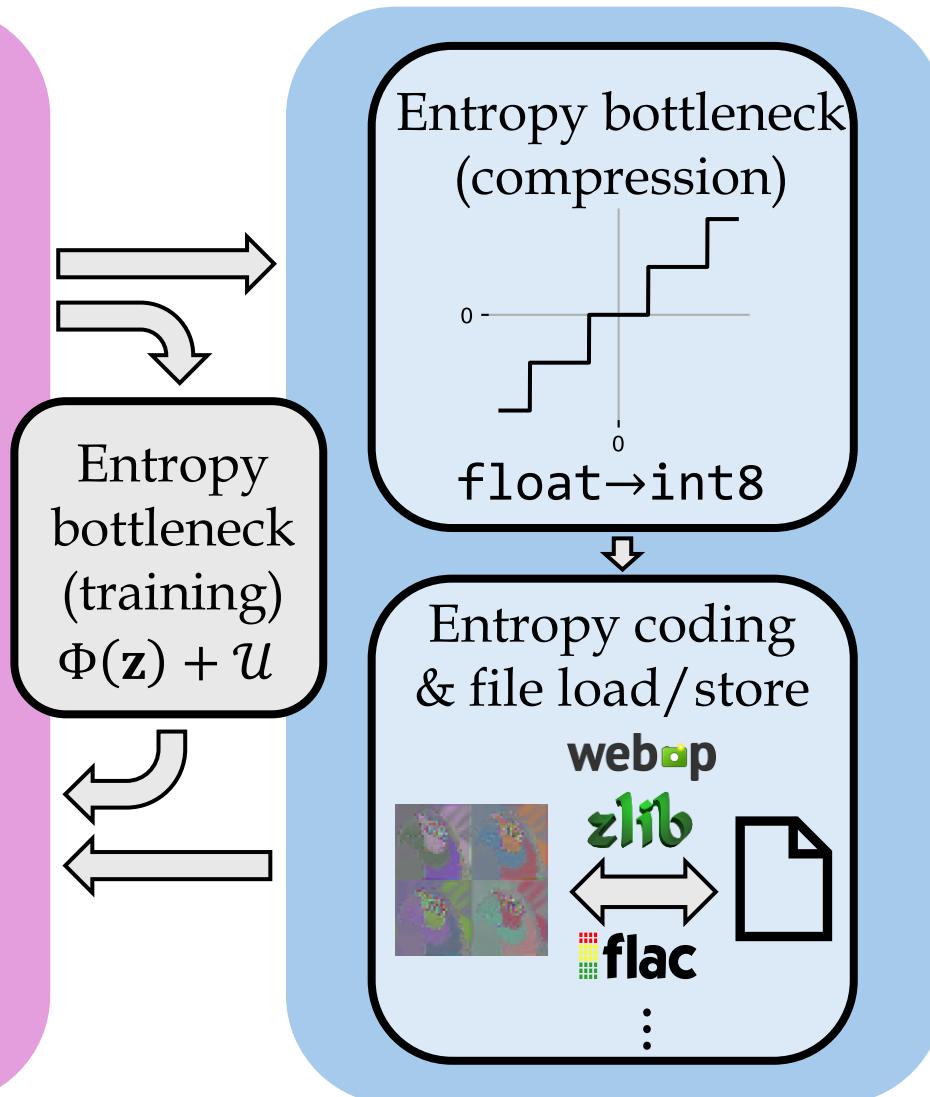
Encoding efficiency



Dimension reduction



Compression ratio



How to avoid the pitfalls of generative autoencoders?

Resample

WEBP

DGML (Cheng2020)

Stable Diff. VAE

	RR	LTC	E2ELC	GenAE	Goal
Allow efficient encoding	✓	✓	✗	✗	✓
Accelerate downstream ML	✓	✗	✗	✓	✓
Achieve high compression rate	✗	✓	✓	✗	✓
Preserve details	✗	✓	✓	✗	✓
Support many modalities	✓	✗	✓	✗	✓

Loss function

$$\mathcal{L}(x, \hat{x}) = \underbrace{\text{MSE}(\text{LPF}\{x\}, \text{LPF}\{\hat{x}\})}_{\substack{\text{Pooled MSE} \\ (\text{does not penalize high frequencies})}} + \underbrace{\mathcal{L}_{\text{LPIPS}}(x, \hat{x})}_{\substack{\text{Learned perceptual} \\ \text{patch similarity}}} + \underbrace{\mathcal{L}_{\text{GAN}}(x, \hat{x})}_{\substack{\text{Adversarial loss using} \\ \text{VGG16 discriminator}}}$$

Only preserves low frequency details

Requires pre-trained models specific to RGB images

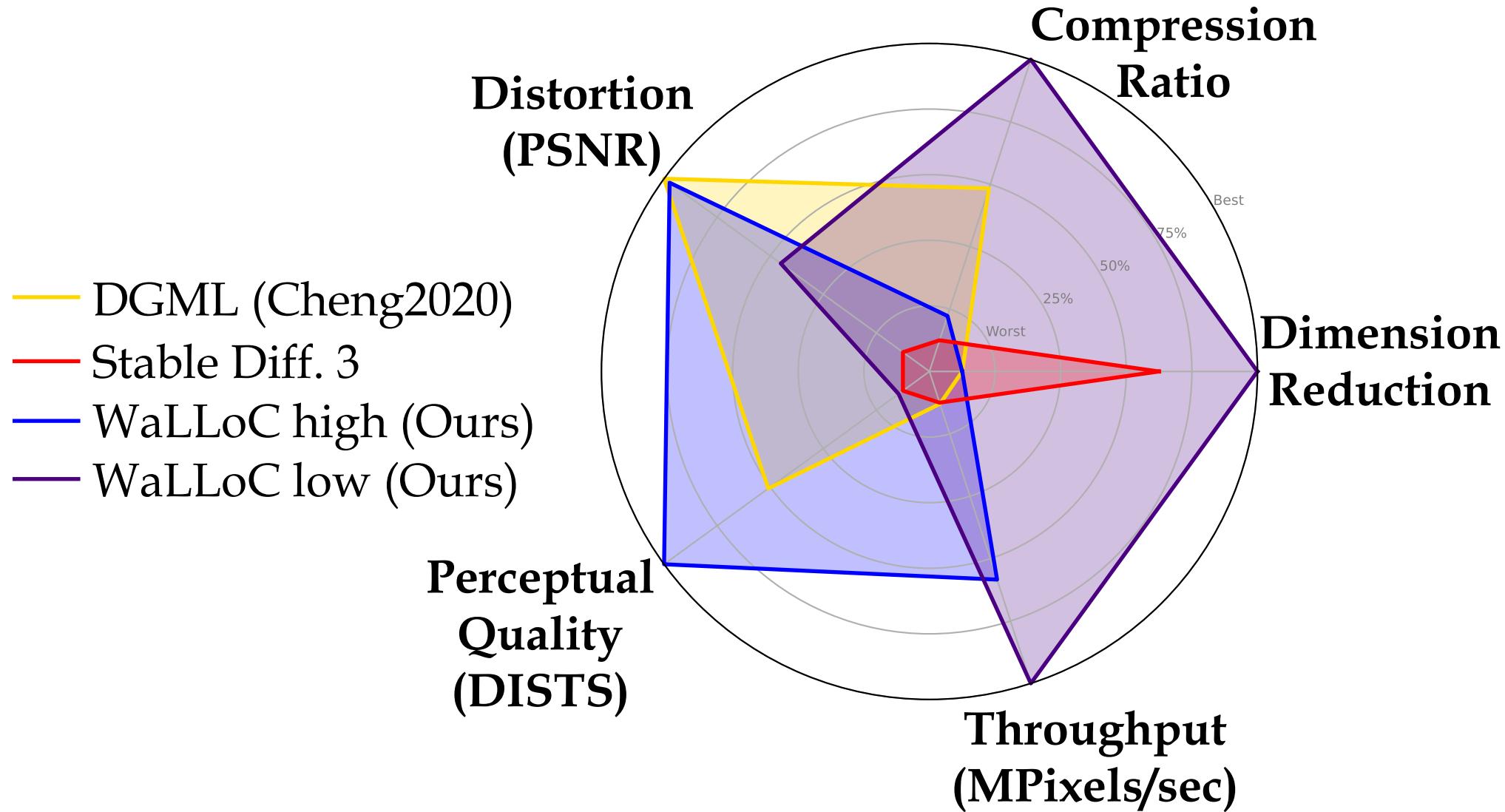
$$\mathcal{L}(x, \hat{x}) = \text{MSE}(x, \hat{x})$$

$$\hat{x} = \text{decode}(\text{encode}(x) + \mathcal{U})$$

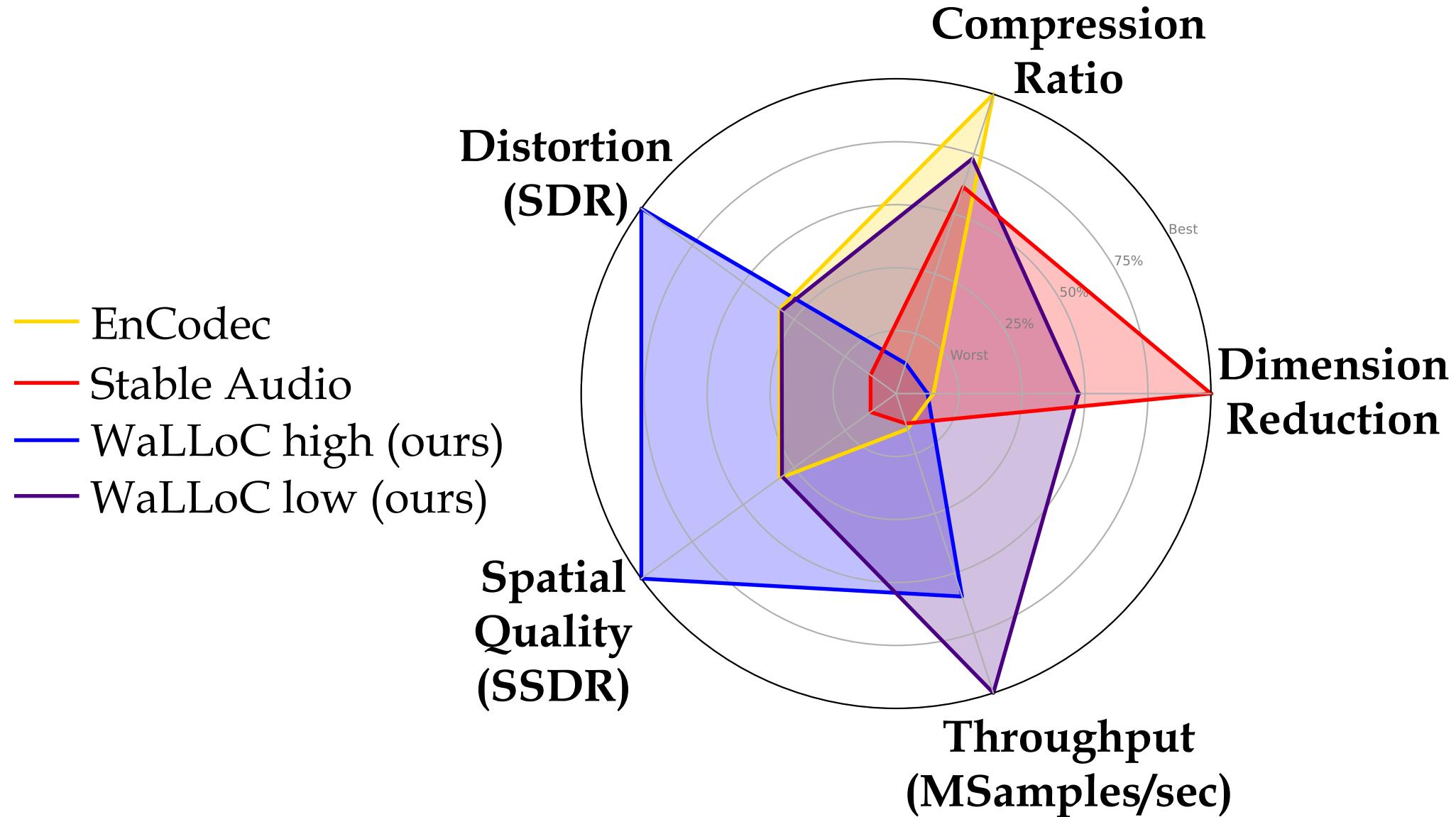
Better preservation of high frequency details

Supports a wide range of modalities

Comparison of autoencoder designs (RGB image)



Comparison of autoencoder designs (stereo audio)



How does it perform on downstream applications?

Image Classification

→ Cat

Colorization

Document Understanding

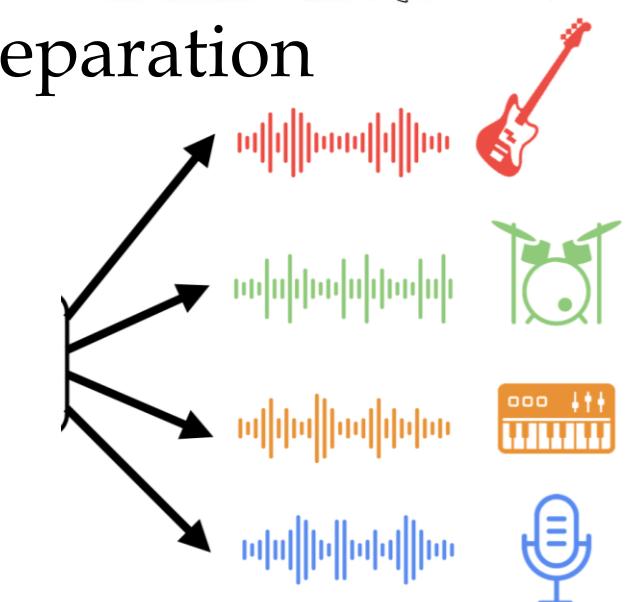
WINSTON LT, G725 WITH 1% TURKISH EXTRACT/5%S-9/100/05-12-92 SET # 14 ;259-279		
DOSE-ug	PLATE COUNTS	MEAN S.D.
0.0000	150. 164. 174.	162.7 12.1
25.0000	157. 181. 186.	174.7 15.5
50.0000	181. 191. 191.	187.7 5.8
75.0000	224. 224. 244.	230.7 11.5
100.0000	256. 261. 252.	256.3 4.5
125.0000	297. 316. 299.	304.0 10.4
250.0000	382. 355. 388.	376.3 15.3

SLOPE= 0.1088102E+01 1088 pulsing to 6 dose

CONTROL WINSTON LT, LOW EXIT G7 SHEET/5%S-9/100/05-12-92 SET # 15 ;280-300		
DOSE-ug	PLATE COUNTS	MEAN S.D.
0.0000	145. 152. 149.	148.7 3.5
25.0000	174. 154. 160.	162.7 10.3
50.0000	187. 196. 202.	195.0 7.5
75.0000	202. 219. 215.	212.0 8.9
100.0000	205. 218. 241.	221.3 18.2
125.0000	267. 275. 276.	272.7 4.9
250.0000	306. 274. 312.	297.3 20.4

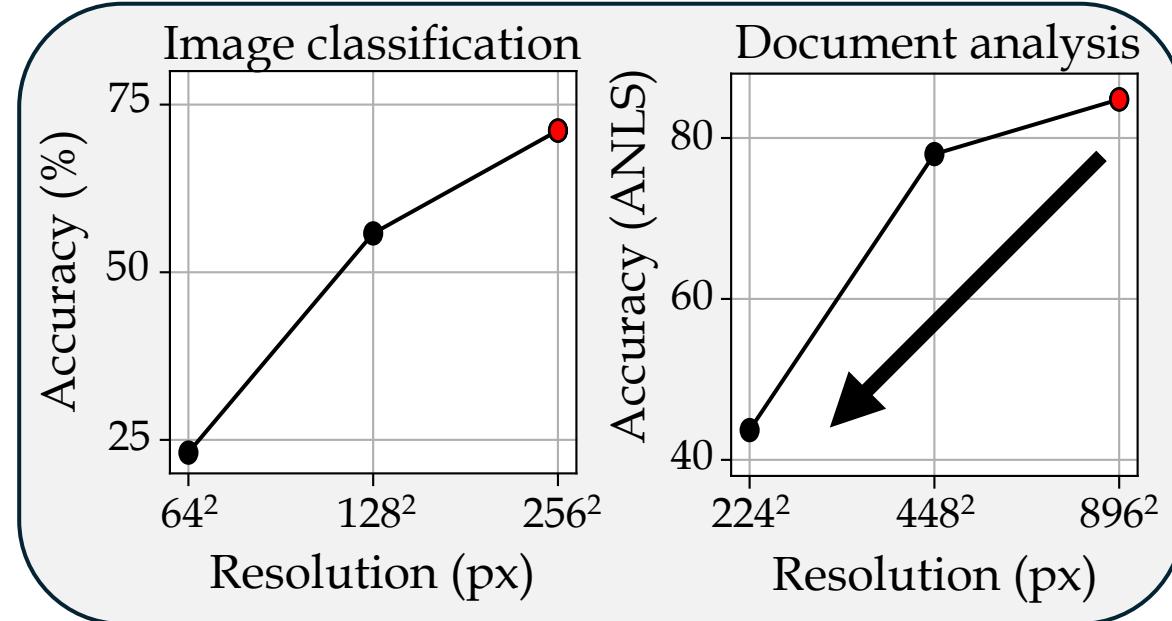
SLOPE= 0.9183201E+00 918 pulsing for 6 doses

Source Separation



Comparison vs. resolution reduction

Reduced resolution & reduced computation



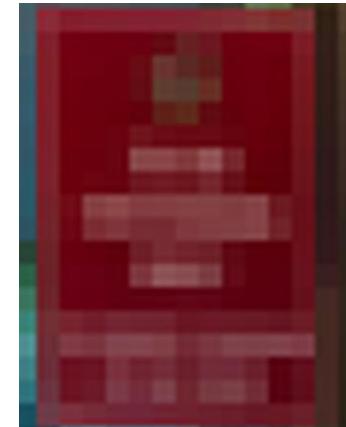
4× lower latency

21GB → 8GB GPU Mem

85% → 44% Accuracy

Baseline ●

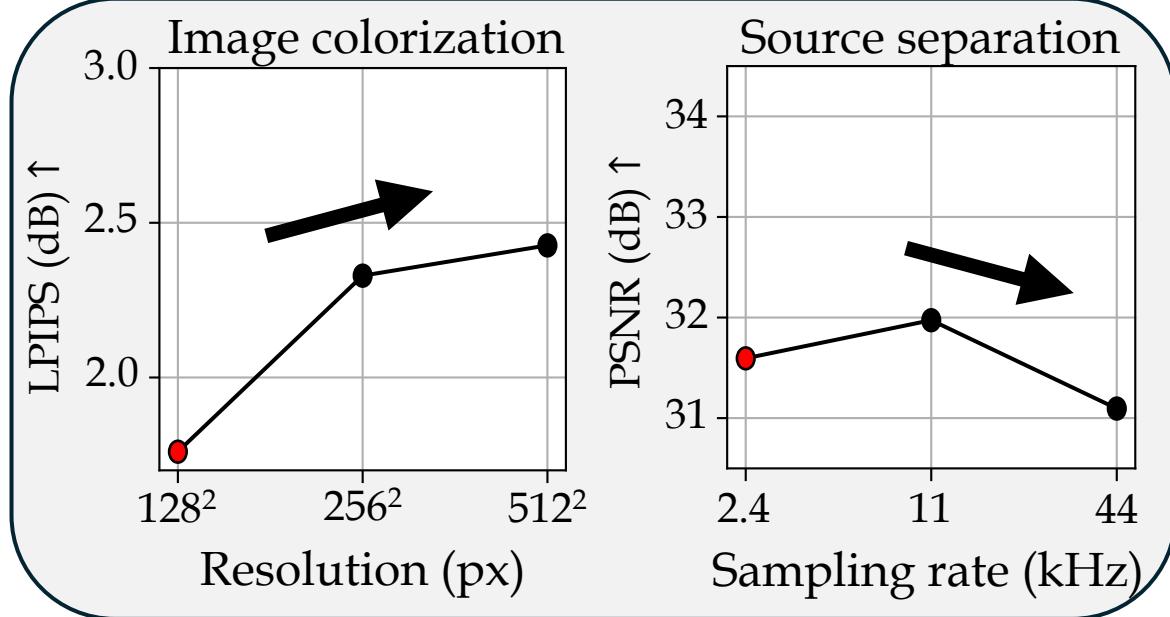
Resample ●



Comparison vs. resolution reduction

Diminishing return of larger patches / filters

Increased resolution & fixed computation

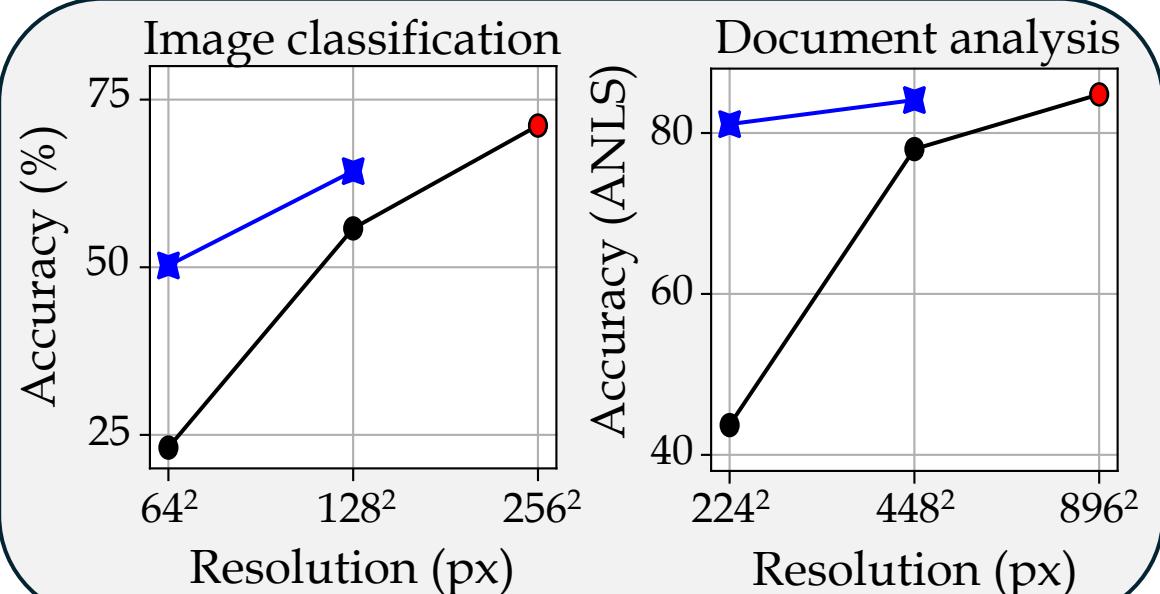


Baseline ●

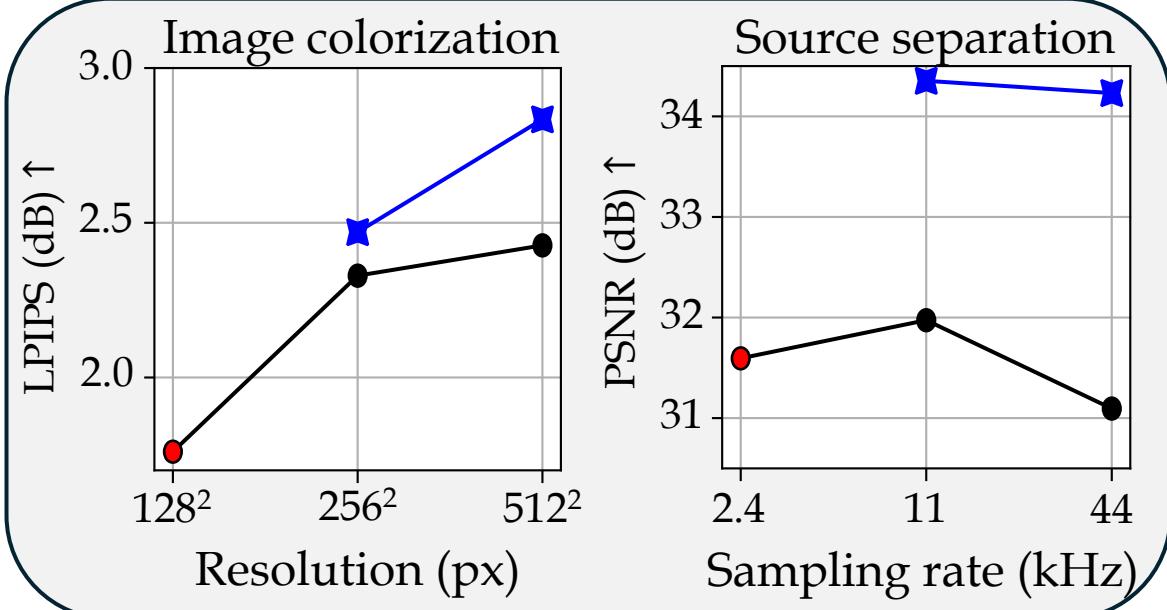
Larger patches —●—

Comparison vs. resolution reduction

Reduced resolution & reduced computation



Increased resolution & fixed computation



Visual Comparison

Original

786 KB

JPEG

6 KB

Visual Comparison

786.43 KB

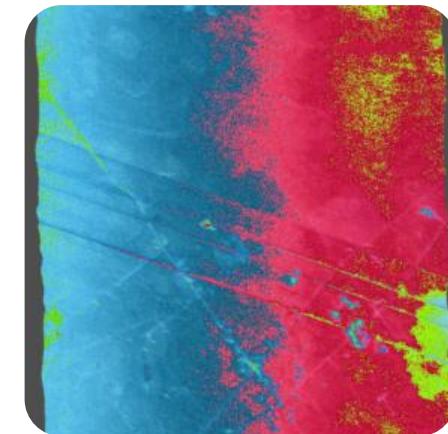
5.5 KB

Areas for improvement

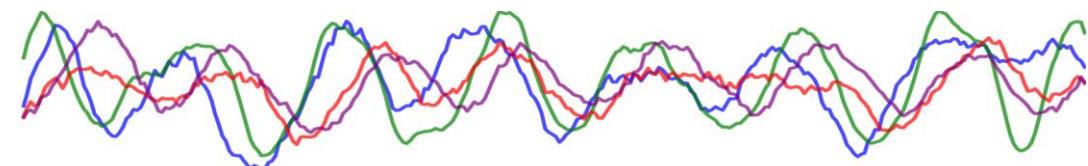
- Can we make it competitive in terms of the rate-distortion-complexity trade-off?
- How can we support a wider range of specialized signals types and modalities?
- Can we decouple the “generative” part of the decoding process to make it optional?

Medical Images
and 3D volumes

Video



Hyperspectral
& HDR



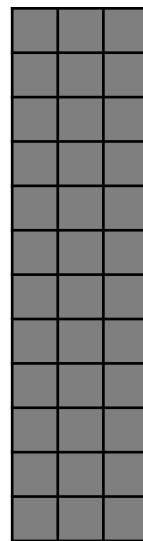
Multi-channel & spatial audio

Even a single linear projection can be expensive

Dense 1×1 conv. layer

$$N_{\text{in}} = (2^J)^D$$

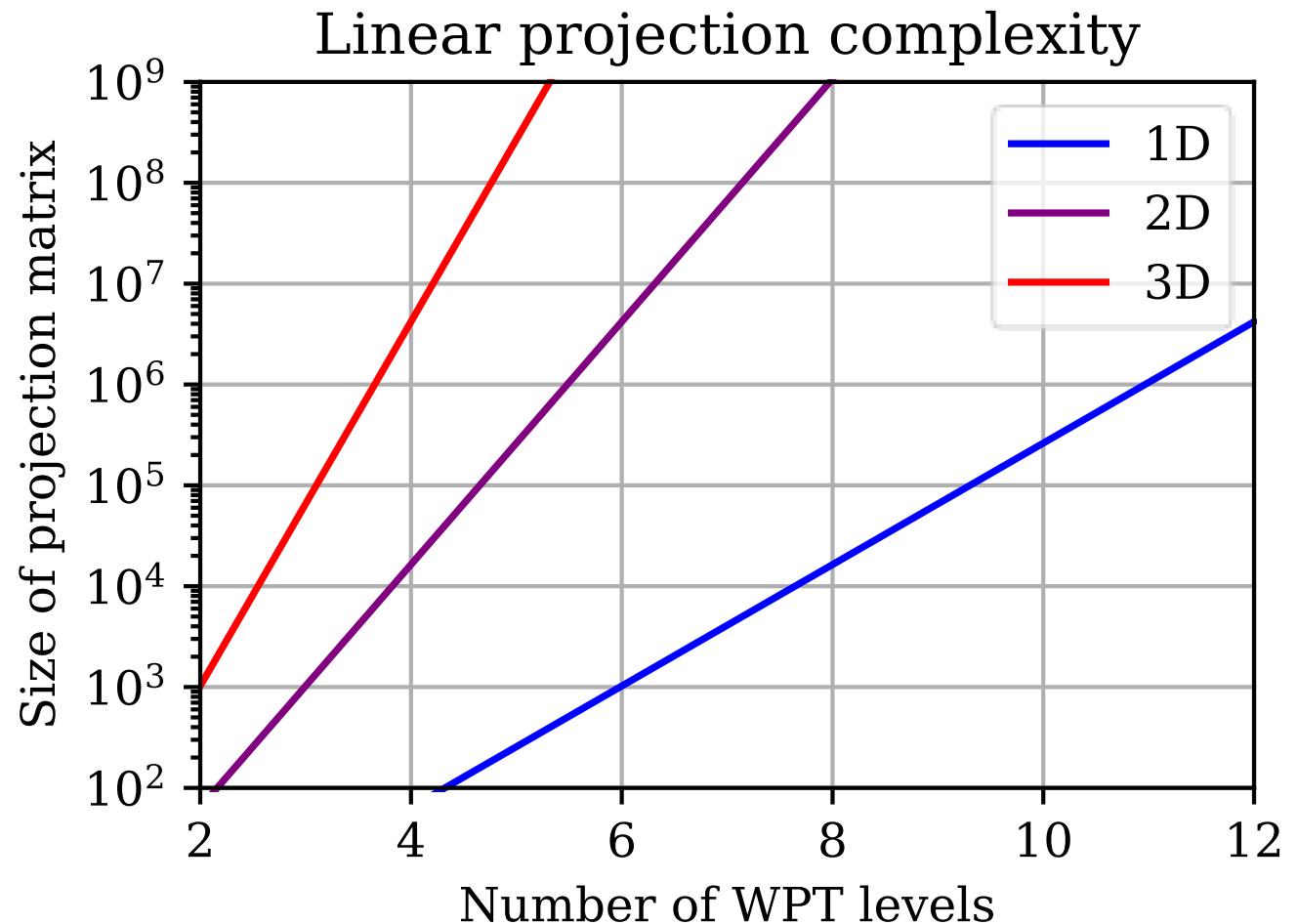
input dimension



$$N_{\text{out}} = \frac{N_{\text{in}}}{R}$$

Latent dimension

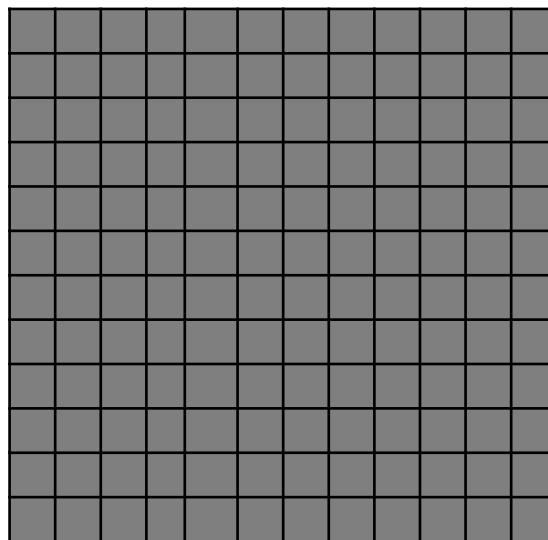
$$\text{MACs} = 2^{2JD}/R$$



Lightweight, FFT-inspired structured operations

Dense 1×1 conv. layer

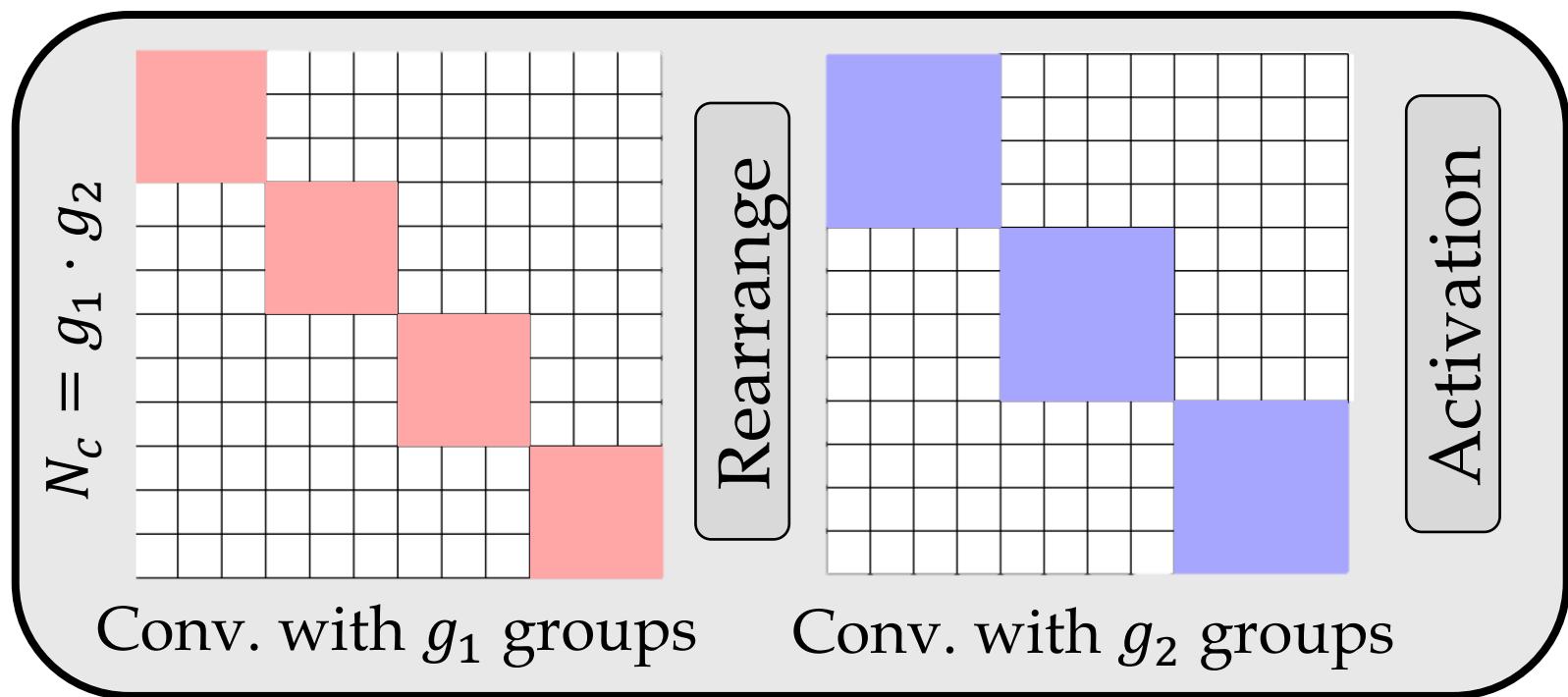
N_c = Input dimension



N_c = Output dimension

$$\text{MACs} = N_c^2$$

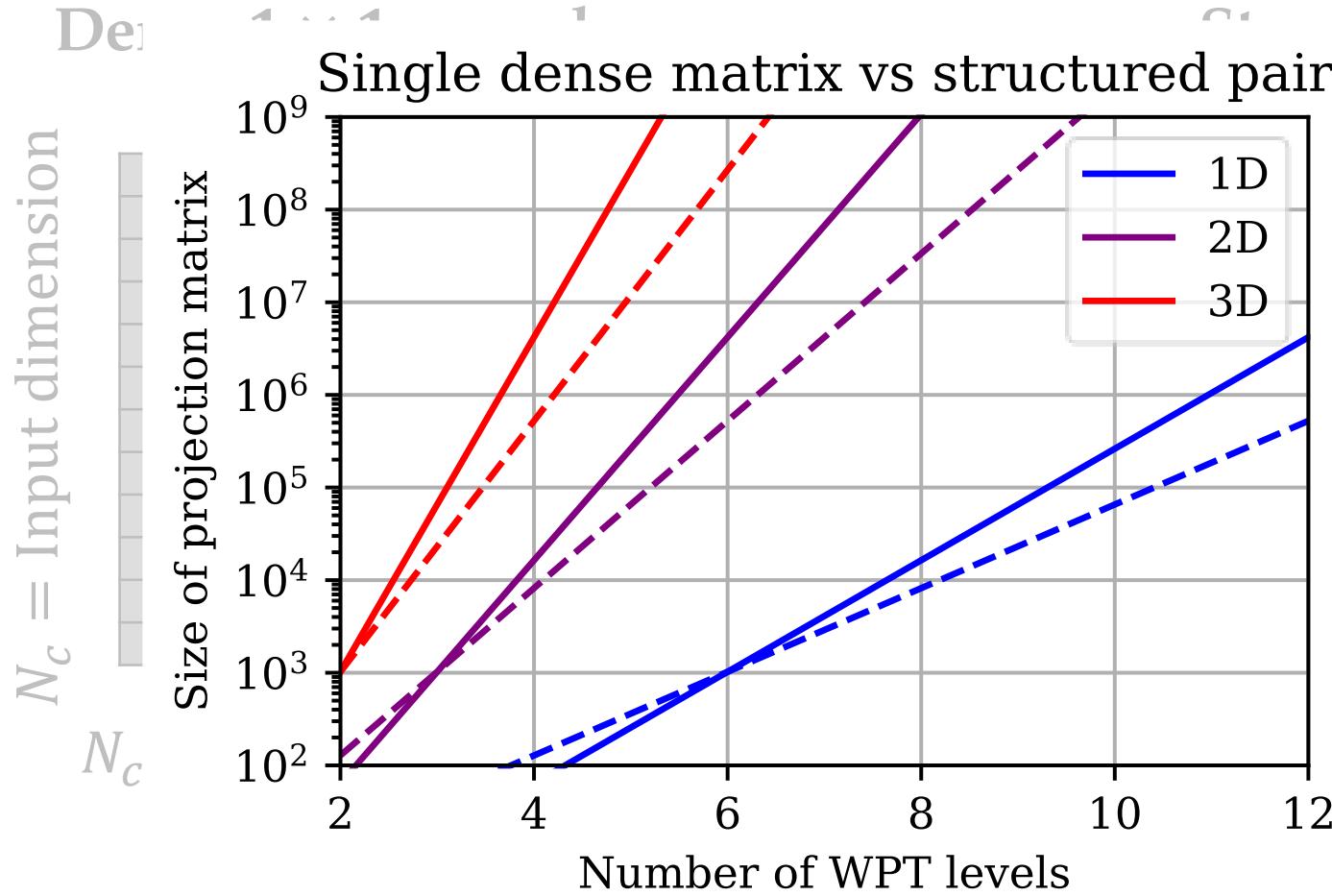
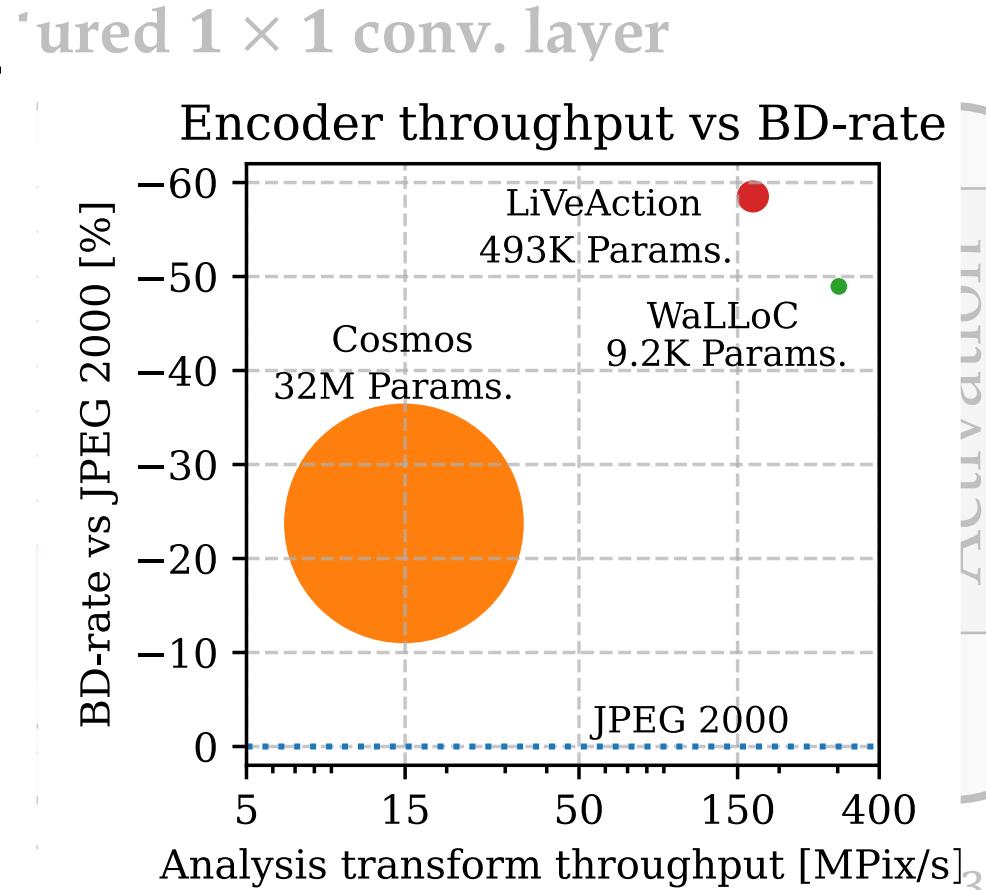
Structured 1×1 conv. layer



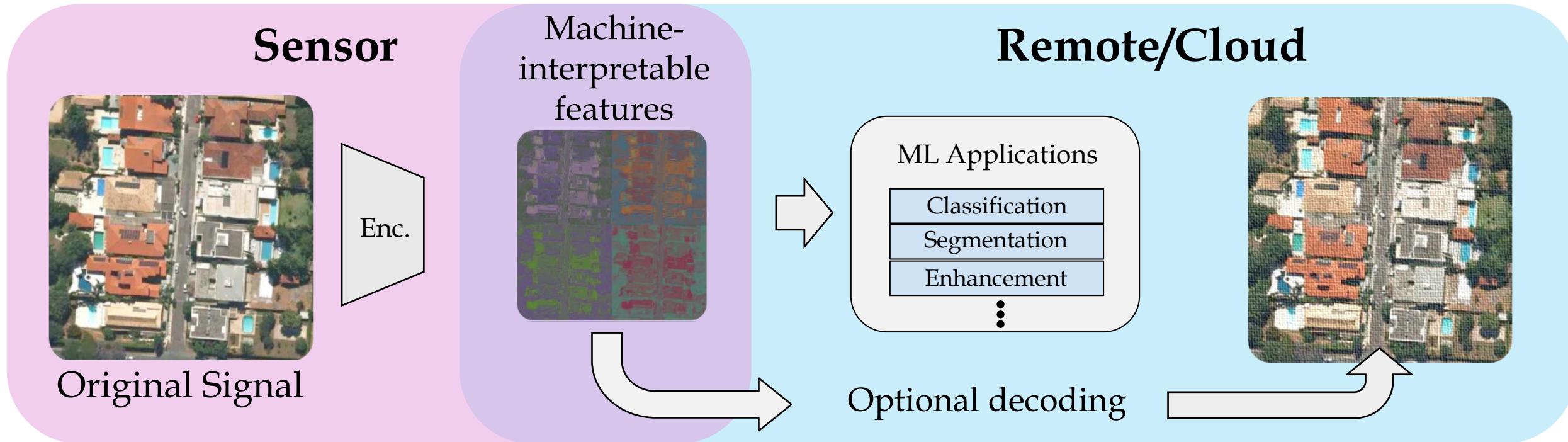
$$g_1 \approx g_2 \approx \sqrt{C_{\text{input}} \cdot 2^{J \cdot D}}$$

$$N_c \log N_c \leq \text{MACs} \leq N_c^{3/2}$$

Lightweight, FFT-inspired structured operations



Asymmetric Design

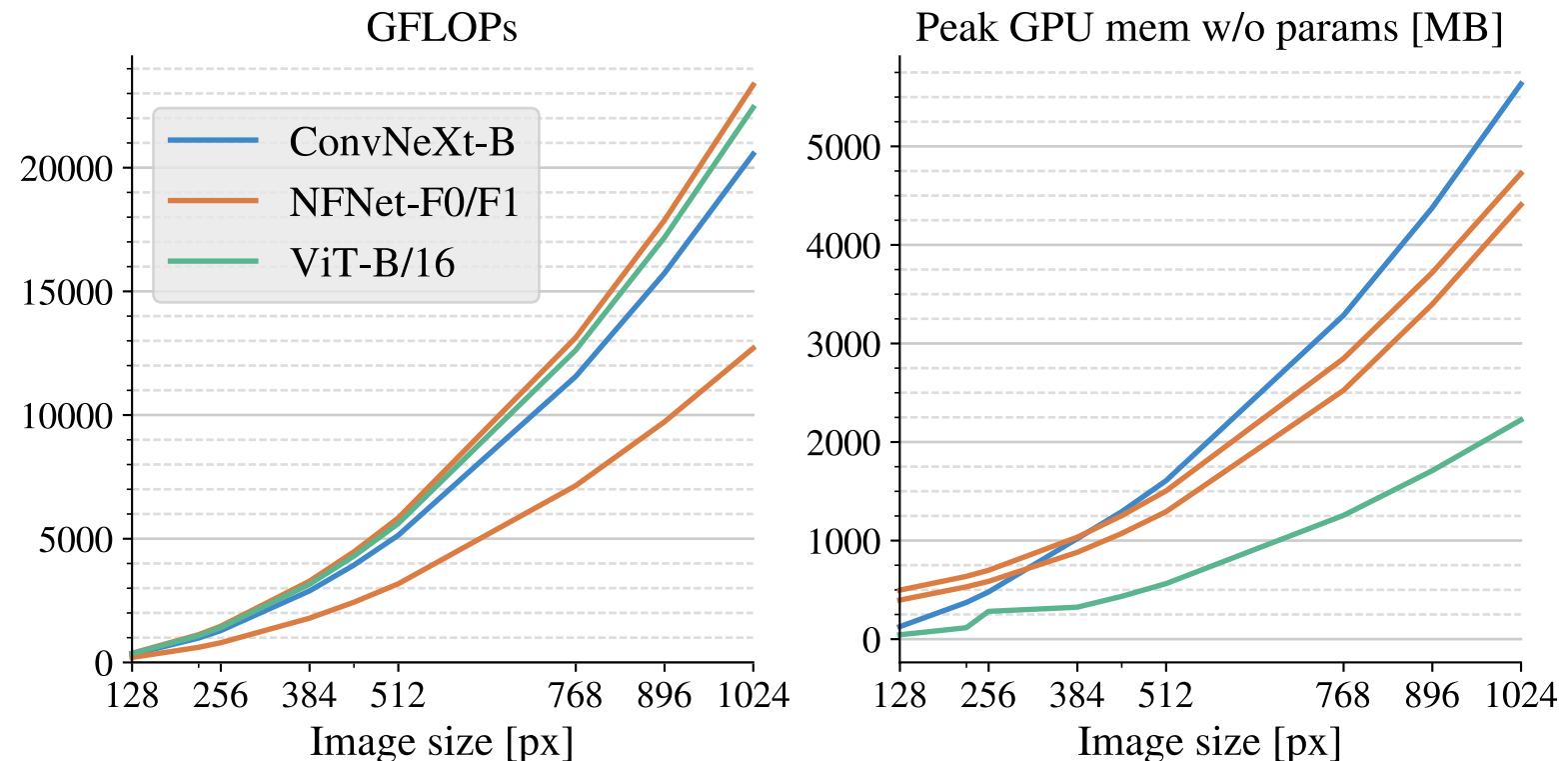


**Encoding efficiency
is very important**

**Decoder can run on cloud AI supercomputers
(or throw it away completely)**

Improving the synthesis transform

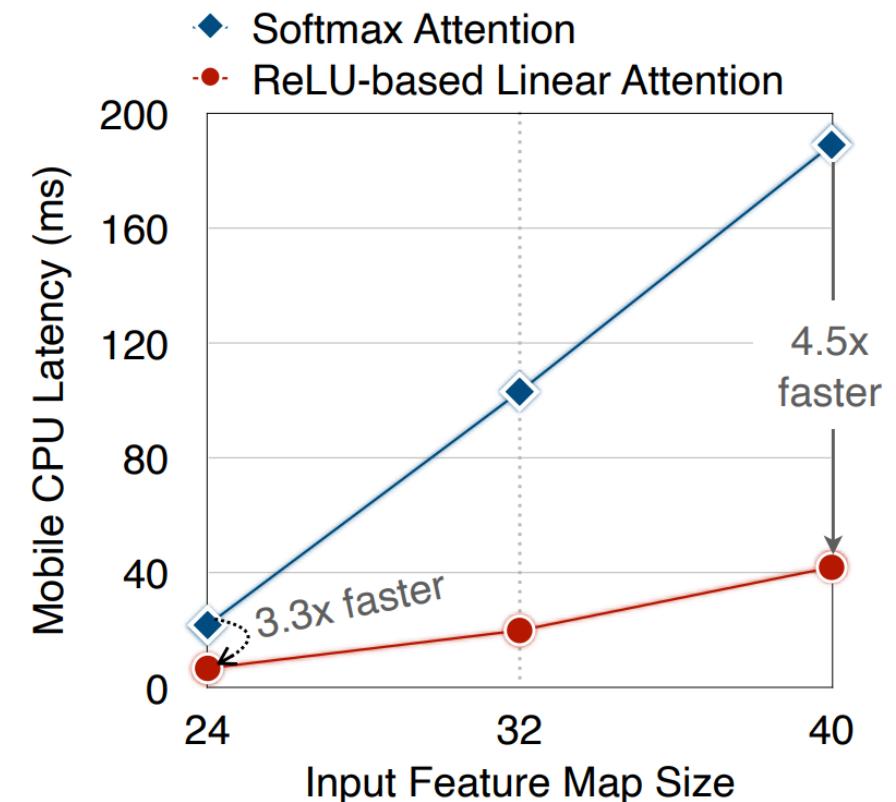
- High complexity synthesis transform is tolerable at runtime
- Training should still be possible in reasonable number of GPU hours
- Support modalities with high spatial and/or temporal resolution



Beyer, Lucas. "On the speed of ViTs and CNNs." (2024).

ND-generalized ViT decoder with linear attention

- Global receptive field
→ Exploit non-local redundancies
- No excessive compute requirements
→ Train at high resolution on single GPU
- No position encoding or batch norm
→ Works for any modality



Cai, Han, et al. "Efficientvit: Lightweight multi-scale attention for high-resolution dense prediction." *Proceedings of the IEEE/CVF international conference on computer vision*. 2023.

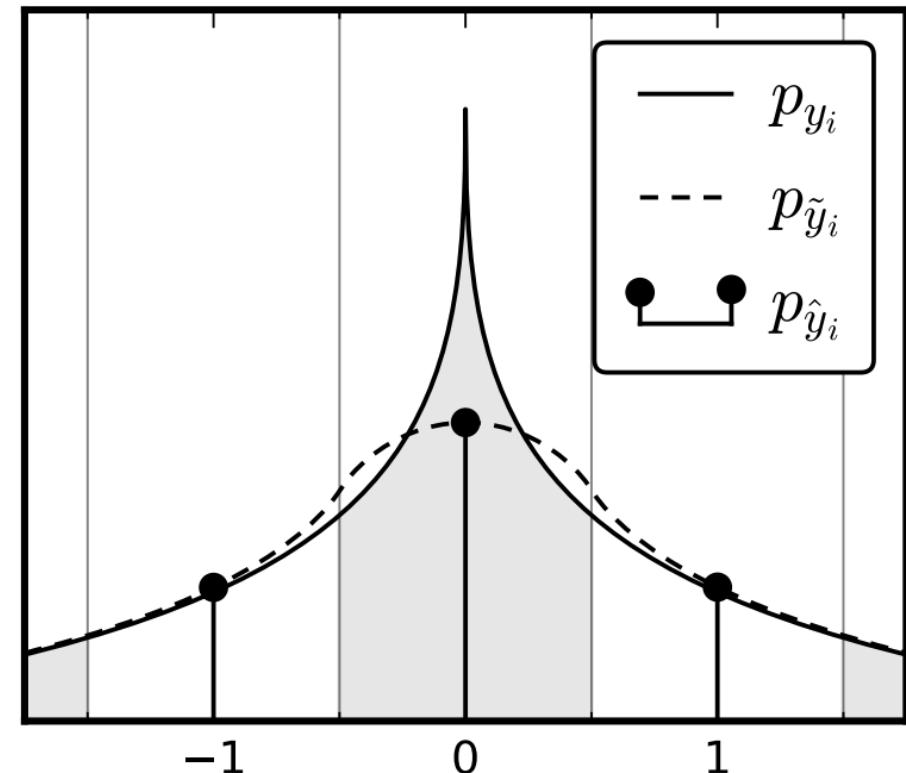
LiVeAction Overview

- Can we make it competitive in terms of the rate-distortion-complexity trade-off?
- How can we support a wider range of specialized signals types and modalities?
- Can we decouple the “generative” part of the decoding process to make it optional?
- FFT-like structured matrix operations in encoder
- ND-generalized vision transformer decoder with linear attention
- Simplified rate penalty

Rate objective

$$\min_{\mathcal{E}, \mathcal{D}} \underbrace{\|x - \mathcal{D}((\mathcal{E}(x)))\|^2}_{\text{MSE Distortion}} + \underbrace{H(\mathcal{E}(x))}_{\text{latent rate}}$$

- Standard approach to optimize $H(\mathcal{E}(x))$ involves fitting a continuous proxy distribution p_{y_i}
- Requires an auxiliary optimizer with additional hyperparameters and separate learning rate



Ballé, Jona, Valero Laparra, and Eero P. Simoncelli. "End-to-end Optimized Image Compression." *International Conference on Learning Representations*. 2017.

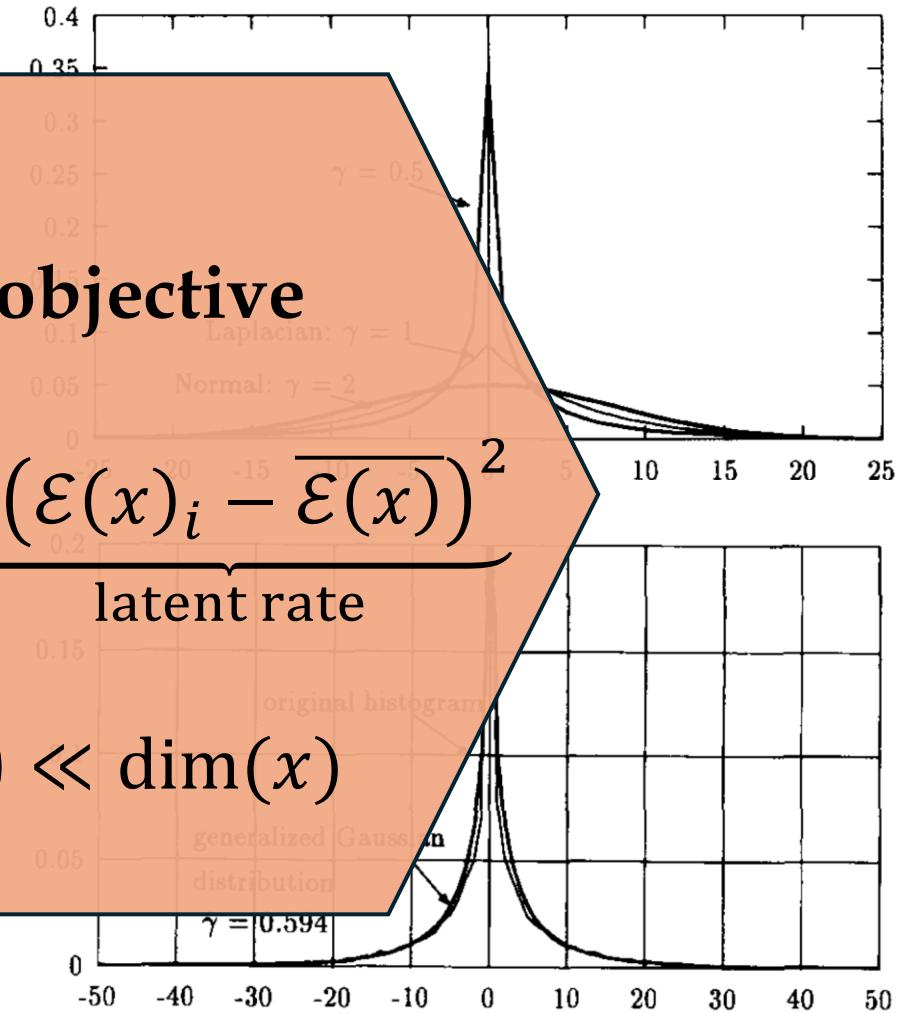
Simplified rate penalty

- Intensity of sub-band filter outputs follow gaussian distribution (Gaussian)
- Empirically analysis trained GGD
- For exponential family, minimizing variance is equivalent to minimizing rate

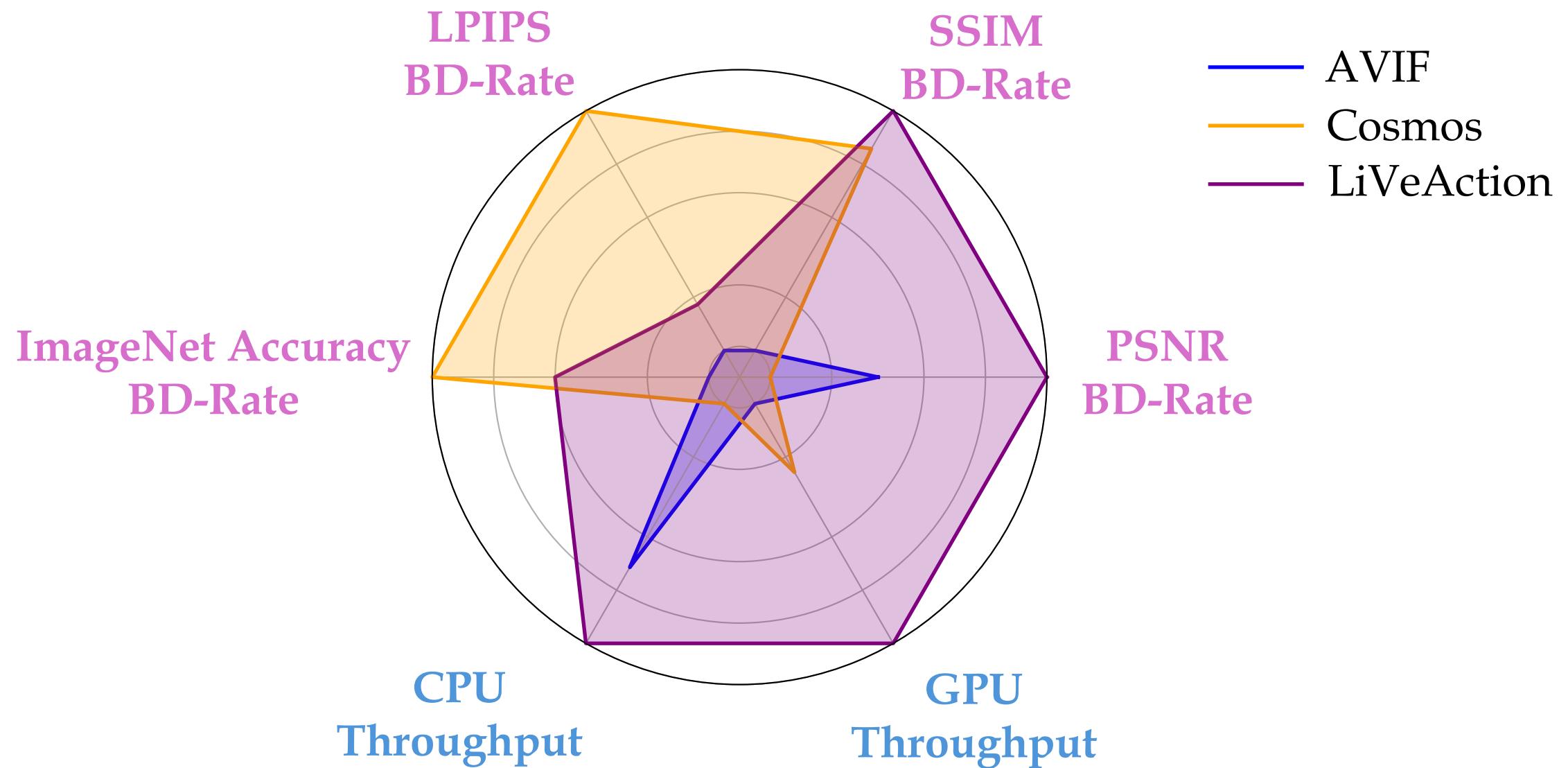
Simplified training objective

$$\min_{\mathcal{E}, \mathcal{D}} \underbrace{\|x - \mathcal{D}(\mathcal{E}(x))\|^2}_{\text{MSE Distortion}} + \underbrace{\sum (\mathcal{E}(x)_i - \bar{\mathcal{E}}(x))^2}_{\text{latent rate}}$$

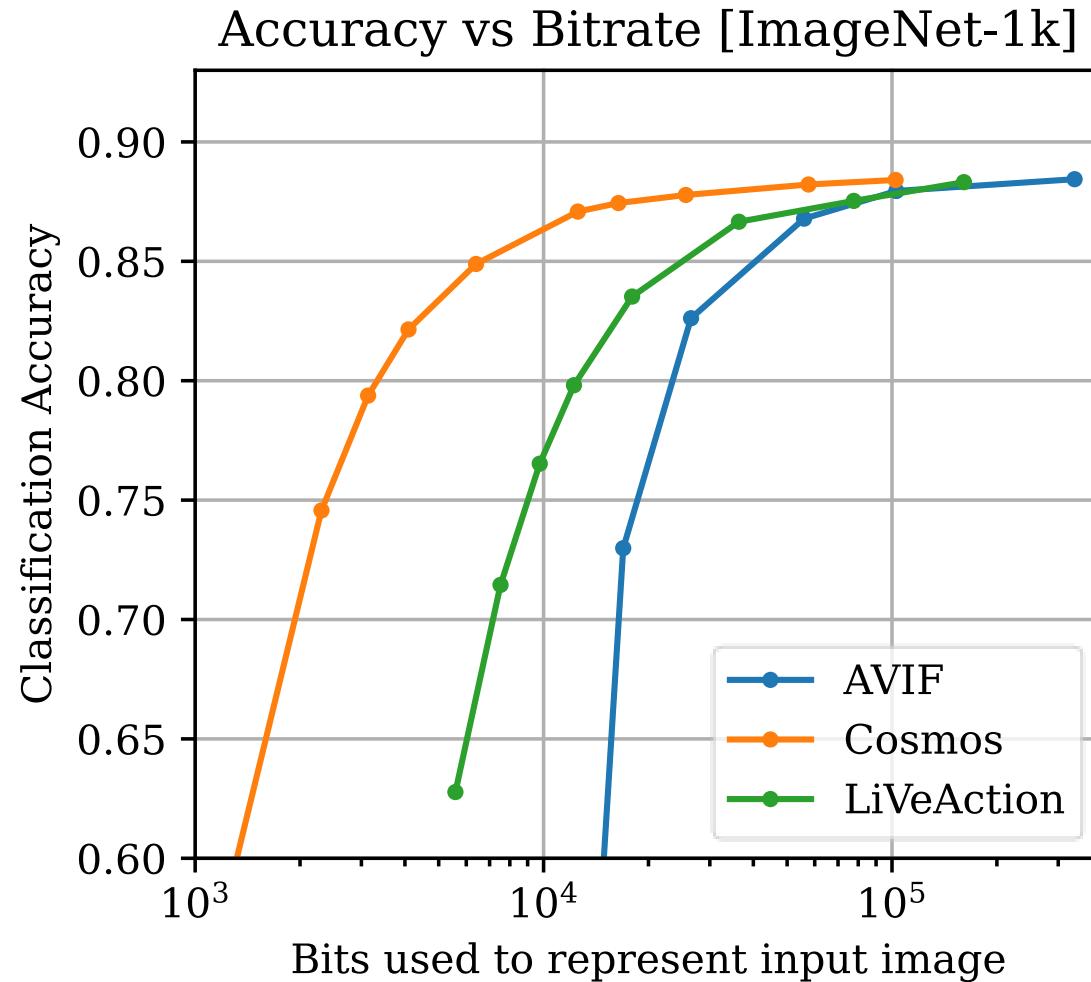
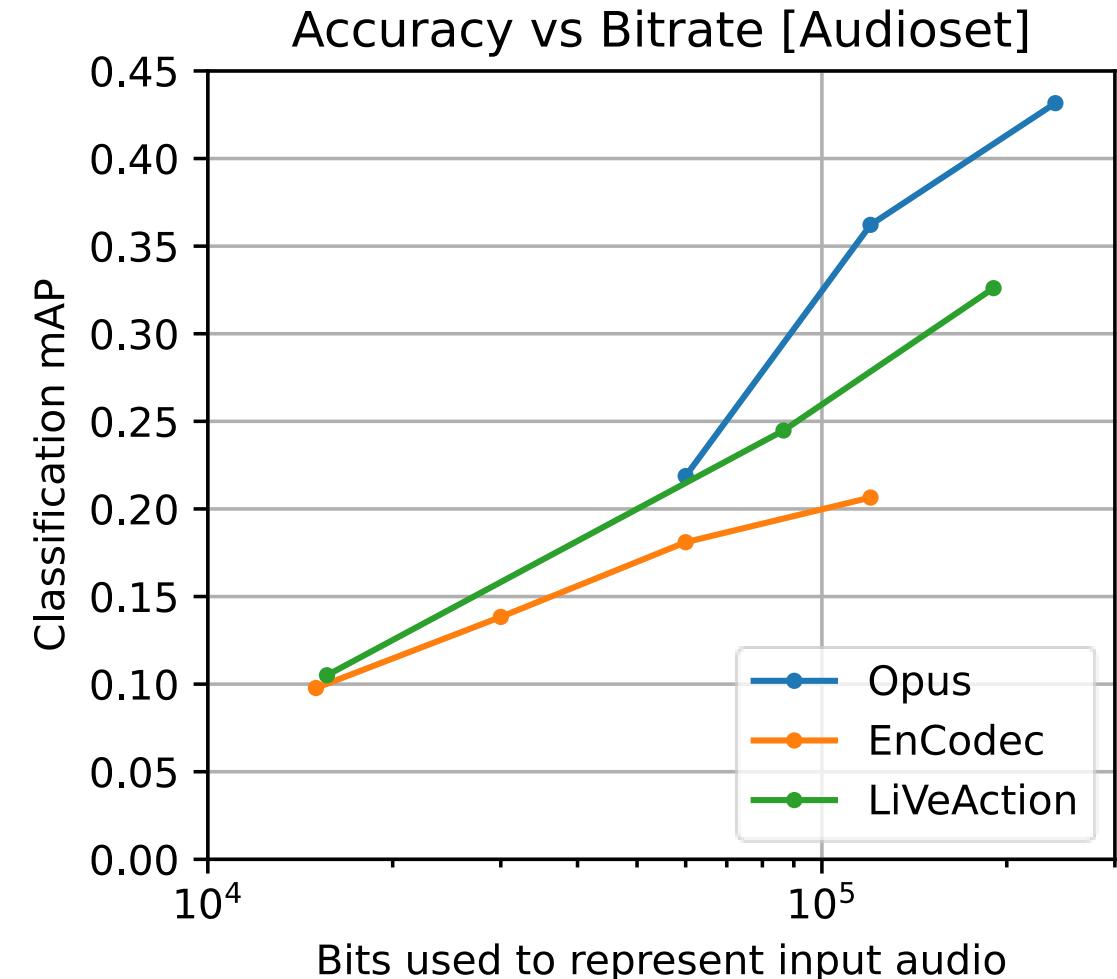
Subject to $\dim(\mathcal{E}(x)) \ll \dim(x)$



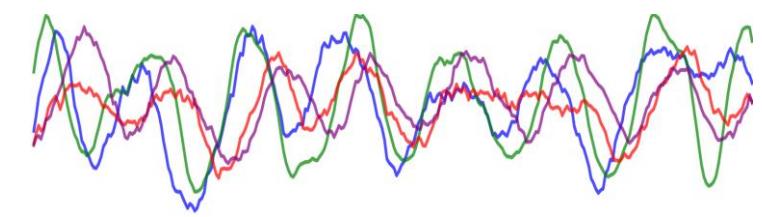
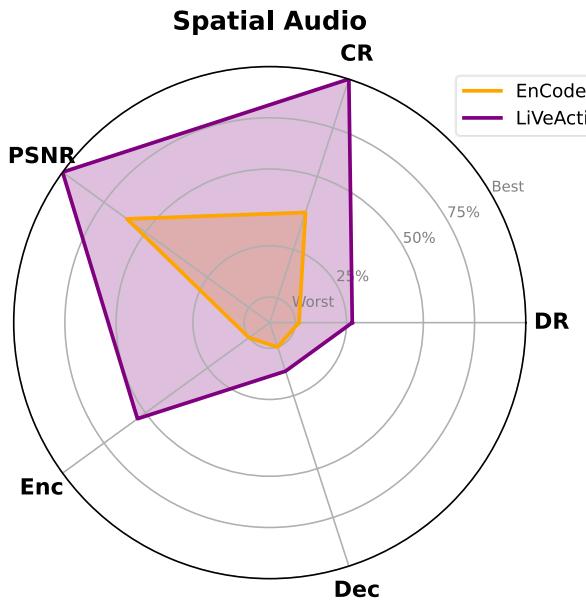
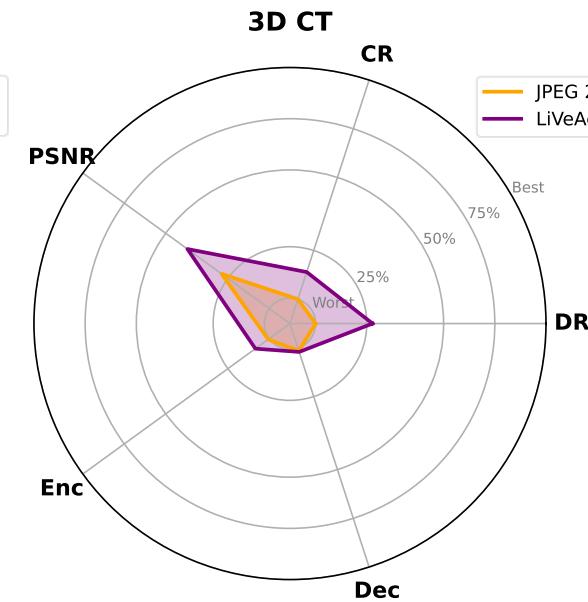
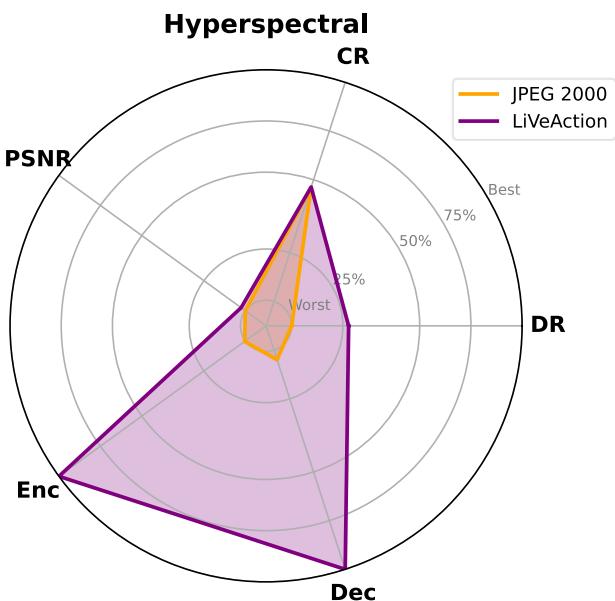
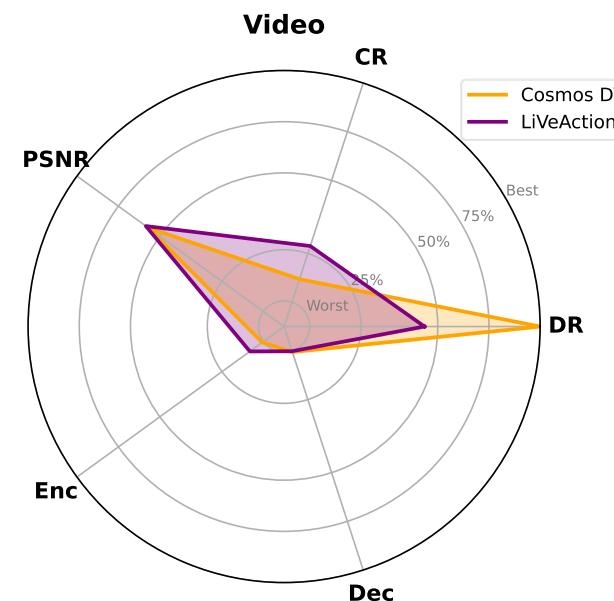
Compression efficiency and computational efficiency



Machine Perception



Other modalities



Generative Enhancement

(a) Original

(b) Cosmos

(c) LiVeAction

(d) LiVeAction + FLUX

Publications

- [1] D. Jacobellis, D. Cummings, and N.J. Yadwadkar. "Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models." *Data Compression Conference*. IEEE, 2024.
- [2] D. Jacobellis and N.J. Yadwadkar. "Learned Compression for Compressed Learning." *Data Compression Conference*. IEEE, 2025.
- [3] D. Jacobellis and N.J. Yadwadkar. "LiVeAction: a Lightweight, Versatile, and Asymmetric Neural Codec Design for Real-time Operation." Under Review.
- [4] D. Jacobellis, M. Ulhaq, F. Racapé, H. Choi, and N.J. Yadwadkar. "Dedelayed: Deleting remote inference delay via on-device correction." Under Review.

Software releases

Installation → `pip install walloc`

Audio → [Pre-trained codec](#)

Images → [Pre-trained codec](#)

Training (1D) → [Tutorial](#)

Training (2D) → [Tutorial](#)

More details available:

<https://ut-sysml.org/walloc/>

Contact: danjacobellis@utexas.edu

Software releases

Installation → pip install livecodec

Dozen+ pre-trained codecs available on Hugging Face
<https://hf.co/danjacobellis/liveaction>

Training → [Tutorial](#)

More details available:
<https://ut-sysml.org/liveaction/>

Contact: danjacobellis@utexas.edu