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Abstract

In generative modeling, autoencoders are used to represent high-resolution signals as
low-dimensional latents, enabling efficient processing. However, this approach remains chal-
lenging for discriminative modeling and signal enhancement as existing autoencoders either
discard and re-synthesize high-frequency details or provide minimal dimensionality reduc-
tion. Additionally, existing neural codecs use computationally expensive encoders, pro-
hibiting their use with power-constrained mobile sensors and adding overhead for uncom-
pressed data. To address these limitations, we introduce WaLLoC (Wavelet Learned Lossy
Compression), a neural codec architecture that combines linear transform coding with non-
linear dimensionality-reducing autoencoders. WaLLoC sandwiches a shallow, asymmetric
autoencoder and entropy bottleneck between an invertible wavelet packet transform. Across
several key metrics, WaLLoC outperforms the autoencoders used in state-of-the-art latent
diffusion models. WaLLoC does not require perceptual or adversarial losses to represent
high-frequency detail, providing compatibility with modalities beyond RGB images and
stereo audio. WaLLoC’s encoder consists almost entirely of linear operations, making it ex-
ceptionally efficient and suitable for mobile computing, remote sensing, and enabling learn-
ing directly from compressed data. We demonstrate WaLLoC’s capability for compressed-
domain learning across several tasks, including image classification, colorization, document
understanding, and music source separation. Our code, experiments, and pre-trained audio
and image codecs are available at https://hf.co/danjacobellis/WaLLoC.

1 Introduction

In the last decade, deep neural networks (DNNs) have rapidly evolved from simple
classifiers [1, 2] to domain-specific and multi-modal foundation models [3, 4]. With
this shift, models are increasingly able to make use of minute and high-frequency
signal details. For example, when increasing the resolution of PaliGemma from 2242

to 8962 pixels (Figure 1), its ability to analyze documents increases from 44% to 85%
ANLS [4]. However, operating at this increased resolution requires significantly more
GPU memory (21 vs 8 GB) and 4× higher latency.

Compressed-domain learning [5, 6, 7] has been proposed to improve the trade-off
between model accuracy and compute needs. In this paradigm, the model operates
on low-dimensional (lossy) compressed data, thereby enabling dramatic reductions
in compute cost and inference latency while maintaining model accuracy. However,
existing lossy compression methods, coming from three main categories, are not ideal
for compressed-domain learning. (a) Linear transform coding methods (e.g., JPEG,
MP3) compact energy but do not reduce dimensionality, resulting in no compute
reduction. (b) End-to-end learned compression [8] uses nonlinear autoencoders for
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Figure 1: In discriminative models (left), resolution reduction increases training and in-
ference efficiency, but significantly degrades accuracy. Replacing resolution reduction with
WaLLoC leads to significantly higher accuracy, while providing the same degree of accel-
eration. For signal enhancement (right), WaLLoC provides better quality when scaling to
high resolutions compared to directly operating on image pixels or audio samples.

better rate-distortion but with additional encoding overhead, limiting benefits for
compressed-domain learning. (c) Generative autoencoders [7, 9] achieve significant
dimensionality reduction but sacrifice detail preservation and add high encoding over-
head, leading to poor performance in discriminative tasks [10].

In this work, we introduce WaLLoC (Wavelet-Domain Learned Lossy Compres-
sion), an architecture for learned compression that simultaneously satisfies three key
requirements of compressed-domain learning:

1. Computationally efficient encoding to reduce overhead in compressed-domain
learning and support resource constrained mobile and remote sensors. WaLLoC
uses the computationally cheap and invertible wavelet packet transform [11] to
expose signal redundancies prior to autoencoding. This allows us to replace the
encoding DNN with a single linear layer (<100k parameters) without significant
loss in quality. As shown in Figure 2, WaLLoC incurs < 5% of the encoding cost
compared to other neural codecs.

2. High compression ratio for storage and transmission efficiency. Lossy codecs
typically achieve high compression by combining quantization and entropy cod-
ing. However, naive quantization of autoencoder latents leads to unpredictable
and unbounded distortion. Instead, we apply additive noise during training as an
entropy bottleneck [8], leading to quantization-resiliant latents. When combined
with entropy coding, WaLLoC achieves nearly 12× higher compression ratio com-
pared to the VAE used in Stable Diffusion 3 [12], despite offering a higher degree
of dimensionality reduction and similar quality (Figure 2, Table 1).

3. Dimensionality reduction to accelerate compressed-domain modeling. WaL-
LoC’s encoder projects high-dimensional signal patches to low-dimensional latent
representations, providing a reduction of up to 20×. This allows WaLLoC to be
used as a drop-in replacement for resolution reduction while providing superior
detail preservation and downstream accuracy.

Our main contributions are as follows:



Distortion 
(PSNR)

Compression 
Ratio

Dimension 
Reduction

Throughput
(MPixels/sec)

Perceptual 
Quality 
(DISTS)

Distortion 
(SDR)

Compression 
Ratio

Dimension 
Reduction

Throughput
(MSamples/sec)

Spatial
Quality
(SSDR)

Figure 2: Comparison of our proposed method (WaLLoC) with other autoencoder designs
for RGB Images (Cheng2020 [13], Stable Diffusion 3 [12]) and stereo audio (EnCodec [14],
Stable Audio [9]). Additional metrics are reported in Tables 1 and 2.

• We evaluate the trade-offs between three existing approaches to lossy compression—
(1) linear transform coding, (2) end-to-end learned compression, and (3) generative
autoencoders. We identify key limitations of each when used as a replacement for
resolution reduction in machine learning models.

• We introduce WaLLoC, a modality-agnostic lossy compression framework that si-
multaneously provides (1) efficient encoding, (2) favorable rate-distortion trade-off,
and (3) uniform dimensionality reduction.

• Using our proposed framework, we build RGB image and stereo audio codecs that
outperform other autoencoder designs across several key metrics (Figure 2). We
evaluate WaLLoC’s efficacy for accelerating various machine learning models via
compressed domain operation. Across each of the four tasks —image classification,
colorization, document understanding, and music source separation— WaLLoC
outperforms resolution reduction by a wide margin (Figure 1).

2 Background: Compressed-Domain Learning

Methods for compressed-domain learning can be grouped based on the type of com-
pression (1) linear transform coding [5], (2) end-to-end learned compression [6, 15],
and (3) and generative autoencoders [7, 9].

Linear transform coding. Conventional lossy compression standards—such as
JPEG and MP3 [11] —are based on linear transform coding (LTC). Linear and
invertible transforms like the discrete cosine transform (DCT) or discrete wavelet
transform (DWT) eliminate redundancies while concentrating signal energy into fewer
coefficients nearly optimally and remaining computationally efficient. Quantization
allocates bits to each frequency band according to perceptual models, leading to high
compression ratios with minimal perceived distortion. LTC is often combined with
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Figure 3: WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding
steps are only required to achieve high compression ratios for storage and transmission.
For compressed-domain learning where dimensionality reduction is the primary goal, these
steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.

resolution reduction (e.g. chroma downsampling in JPEG), but does not provide con-
sistent or uniform dimensionality reduction. LTC can improve downstream learning
[5] but does not address the computational issues of scaling DNNs to high resolution.

End-to-end learned compression. Nonlinear autoencoders that are jointly opti-
mized for both rate and distortion [8] achieve higher compression ratios than LTC, but
require more computation [16] and offer limited dimensionality reduction—typically
4× [13]. Efficient decoding, and machine vision without decoding have been explored
[17, 15], but encoding overhead remains significant.

Generative autoencoders. Compressed-domain learning underpins recent break-
throughs in high-resolution generative models[7]. These applications use a low-resolution
generative model is paired with a generative, adversarial, and dimensionality-reducing
autoencoder (GADR-AE)—which we define as any autoencoder offering > 4× di-
mensionality reduction (DR) and trained using adversarial and perceptual losses [18].
GADR-AEs produce low-dimensional latent representations that are up to 64 times
smaller than the original input [9]. However, they lose significant detail in the pro-
cess, so adversarial and perceptual objectives are employed to re-synthesize details
in the decoder [7]. Existing GADR-AEs are computationally cheap compared to the
generative models they enable, but expensive compared to discriminative models.

3 Proposed Method: Design and Implementation

WaLLoC’s design aims at achieving three goals: computationally efficient encoding,
high compression ratio, and uniform dimensionality reduction. We note several key
insights that allow us to address the limitations of previous designs that stand in the
way of achieving these goals. Each of these goals, limitations, and insights motivate
the core design components of WaLLoC, shown in Figure 3.



Figure 4: Example of forward and inverse WPT with J = 2 levels. Each level applies filters
LA and HA independently to each of the signal channels, followed by downsampling by a
factor of two (↓ 2). An inverse level consists of upsampling (↑ 2) followed by LS and HS,

then summing the two channels. The full WPT
∼
X of consists of J levels.

3.1 Achieving computationally efficient encoding.

Two main barriers stand in the way of efficient encoding. (a) poor scaling of au-
toencoder performance with resolution, and (b) difficulty in preserving quality with
lightweight encoders.

(a) Resolution scaling. In existing autoencoder designs [8, 13, 7, 14, 9], a hierarchy
of DNN layers progressively reduce the spatial or temporal resolution while increasing
the channel dimension. However, the initial layers of the encoder and the final layers
of the decoder operate at the original resolution, leading to significant memory and
computational requirements [19]. The wavelet packet transform (WPT), shown in
Figure 4, is a linear and invertible transform that performs an analogous operation. In
each level of the WPT, the signal is divided into high- and low-frequency components,
then downsampled by a factor of two. By recursively applying this process, the WPT
allows spatial and temporal resolution to be traded off for frequency resolution with
minimal computation and no loss of information. InWaLLoC, we exploit this property
by sandwiching the learnable analysis and synthesis transforms between the WPT and
its inverse—allowing all neural network layers to operate at low resolution.

(b) Loss of quality in lightweight encoders. Previous efforts use reduced hidden di-
mension and distillation to reduce the computational cost of pixel-based autoencoders
but incur a significant loss of detail in the process [20]. However, the WPT’s ability
to isolate important signal components from redundancies alleviates this issue. Ad-
ditionally, it is possible to exploit asymmetry between the encoder and decoder. The
decoder objective—disentangling mixed signal components—is difficult and requires a
complex DNN-based transform. In contrast, the encoder objective—discarding signal
redundancies—becomes trivial after applying the WPT. Thus, WaLLoC sandwiches
an asymmetric autoencoder—consisting of a shallow, linear analysis transform and a
deep, nonlinear synthesis transform—between the WPT and its inverse.



3.2 Achieving high compression ratio.

Quantization is the primary mechanism used in lossy compression to reduce bit rate
and achieve a high compression ratio. However, the GADR-AEs that provide good
dimensionality reduction are not compatible with quantization. For example, quan-
tization of Stable Diffusion’s VAE latents leads to severe distortion[20] However if
quantization is applied, very high compression ratios can be achieved via entropy
coding. In WaLLoC, we incorporate an entropy bottleneck—additive noise applied
during training that guarantees quantization resilience during inference [8]. We opti-
mize the noise scale for 8-bit quantization, allowing us to use standard lossless codecs
(e.g PNG or WeBP) for entropy coding. This combination provides an additional
compression multiplier of up to 12× compared to reducing the dimension only.

3.3 Achieving uniform dimensionality reduction.

In addition to quantization, neural codecs achieve high compression ratios via a loss
term that encourages sparse, rather than low-dimensional latents [8]. Using this ob-
jective, it is possible to drive the energy of many of the latent dimensions to zero [21].
However, this type of non-uniform dimensionality reduction is difficult to exploit in
compressed-domain learning. For the encoder to replace resolution reduction, it is
necessary for the dimension to be uniformly reduced across the entire signal. In our
design of WaLLoC, a linear analysis transform consistently and uniformly maps local
signal regions to latents, making it a suitable replacement for resolution reduction in
accelerating downstream models.

3.4 WaLLoC Implementation

WaLLoC’s encoder consists of five stages as shown in Figure 3: (1) wavelet packet
transform (WPT) to trade-off spatial or temporal resolution with channel resolution
(2) learned analysis transform to reduce dimensionality (3) companding to whiten the
latent distribution (4) entropy bottleneck to provide resilience to quantization and (5)
entropy coding to provide high compression ratios. The decoder consists of the reverse
operations: (5) entropy decoding, (6) decompanding, (7) learned synthesis transform,
and (8) inverse WPT. We now provide detailed explanations for each component.

Wavelet packet transform. Figure 4 shows the workflow of the wavelet packet
transform (WPT) and its inverse. We use the Cohen–Daubechies–Feauveau (CDF)
9/7 wavelet [11] to construct the a dyadic filterbank consisting of highpass analysis
(HA), lowpass analysis (LA), highpass synthesis (HS), and lowpass synthesis (LS) fil-
ters. The CDF 9/7 wavelet is chosen for its balance between computational efficiency
and energy compaction. Since these same filters are used in the JPEG 2000 standard,
they are widely supported in software. The WPT reduces the input resolution Rx

and increases the input channel count Cx by a factor 2J for 1D signals (audio) and
by 4J for 2D signals (images), but is linear and invertible. For stereo audio, we use
J = 8, resulting in C∼

X
= 512 channels after the WPT. For RGB images, we use

J = 3, resulting in C∼
X
= 192.

Autoencoder and entropy bottleneck. The output of the WPT
∼
X is projected

to a latent representation z via a learnable analysis transform GA, which consists of a



single linear layer. The latent dimension Cz is a hyperparameter chosen based on the
desired degree of dimensionality reduction. To achieve quantization-resiliant latent
representations, we adopt the entropy bottleneck method from end-to-end learned
compression [8], which consists of adding uniform noise U [−0.5, 0.5] to the latent rep-
resentation during training. Since the sub-band wavelet coefficients of many natural
signals follow a generalized Gaussian distribution (GGD) [22], we apply the Gaussian
CDF Φ(z) as a companding operation prior to the entropy bottleneck. Thus, the
final encoder output is ẑt = Φ(z) + U during training and ẑc = round (Φ(z)) dur-
ing the compression pipeline. We scale the inputs and outputs of the companding
operation Φ to guarantee latents in the range [-127, 127], which in turn guarantees
that ẑc does not underflow or overflow when quantized to a signed 8-bit integer. The
decoder consists of a learnable synthesis transform GS followed by the IWPT. GS is
a convolutional neural network consisting the same residual blocks used in Stable
Audio [9] and Stable Diffusion 3 [12] for 1D and 2D signals respectively. We use a
hidden dimension of Chidden = 512 for the RGB image decoder and Chidden = 768
for the stereo audio decoder. Additional implementation details are available in our
public code repositories 1.

Entropy coding. After quantization, an additional lossless compression step can
be applied. We performed preliminary tests using zlib , PNG (Deflate), and the
lossless mode of WebP . We found that WebP’s entropy coding provided the best
compression ratio—even for audio signals—while maintaining high throughput and
compatibility with ML frameworks like PyTorch. Since WebP expects 24-bit RGB
inputs, we rearrange the multi-channel 8-bit latent tensor into groups of three and
concatenate channel groups along the temporal or spatial dimensions.

Training. We train four codecs—two for stereo audio (5×, 20×) and two for RGB
images (4×, 20×)—on The lossless MUSDB18-HQ [23] and LSDIR [24] datasets. In
each case, the training objective is to minimize mean squared reconstruction error
when latents are subjected to uniform additive noise in the range [-0.5,0.5].

4 Evaluation

We conduct a comprehensive evaluation of WaLLoC to demonstrate its efficacy for
compressed domain learning and efficient split computing. Our evaluation consists of
two main parts. (1) We compare WaLLoC against other lossy codecs in terms of the
trade-off between dimensionality reduction, compression ratio, distortion, perceptual
quality, and computation. (2) We train and evaluate various machine learning mod-
els on representations produced by WaLLoC, and compare their resolution scaling
properties to pixel-based and sample-based versions.

4.1 Compression trade-off analysis

We compare WaLLoC against other popular conventional and neural codecs [12, 9,
14, 13] across five key metrics: (1) degree of dimensionality reduction, (2) compres-
sion ratio, (3) distortion, (4) perceptual quality, and (5) computation. For images,

1Code repository for WaLLoC. Code and and experiments for compressed-domain learning.

https://github.com/danjacobellis/walloc/
https://github.com/danjacobellis/walloc/


Method DR CR Enc. Dec. PSNR MS-SSIM LPIPSdB DISTSdB

WEBP 1 40.6 22.1 2746 28.2 0.96 5.94 13.1
Cheng2020 4 21.8 0.289 0.139 33.8 0.99 8.82 16.9
WaLLoC 4 8.53 14.0 0.47 33.5 0.99 11.2 19.3
SD 3.0 12 6.00 0.195 0.101 20.9 0.84 8.33 13.8
WaLLoC 16 35.2 22.1 0.466 27.5 0.97 6.51 13.9

Table 1: RGB image compression comparison. Metrics: dimensionality reduction (DR),
compression ratio (CR), encoding (Enc.) and decoding (Dec.) throughput (Megapixels/sec,
CPU), distortion (PSNR, MS-SSIM) and perceptual quality (LPIPSdB, DISTSdB). We
report LPIPSdB = −10 log10(LPIPS) and DISTSdB = −10 log10(DISTS) so that higher
values are better for each metric. For each metric, the best performing method is in boldface
and the second best is underlined.

Method DR CR Enc Dec PSNR SSDR SRDR CDPAM

Opus 1.0 119 11.5 102 30.4 16.7 5.03 40.4
WaLLoC 4.74 21.3 77.8 11.2 39.0 33.3 13.9 41.1
EnCodec 5.0 114 2.75 3.03 31.9 22.7 6.69 47.4
WaLLoC 18.9 76.3 121 12.2 33.3 22.5 8.06 36.6
Stable Audio 64.0 64.0 0.308 0.30 28.4 15.7 2.03 49.7

Table 2: Stereo audio compression results. Abbreviations are the same as Table 1.

distortion is measured via PSNR and MS-SSIM [25], while perceptual quality is eval-
uated via LPIPS[26] and DISTS [27]. For audio, distortion is measured via PSNR,
SSDR, and SRDR [28], and perceptual quality is evaluated via CDPAM [29]. For both
audio and images, the computational cost is measured in terms of average encoding
and decoding throughput (megapixels or megasamples per second). Measurements
are made on three different platforms: Low-power CPU (Raspberry Pi), High-power
CPU (Intel i9), and GPU (RTX 4090).

Results of compression trade-off analysis. Figure 2, Table 1, and Table 2
summarize the trade-offs between rate, distortion, perception, computation, and di-
mension between different types of compression. For RGB Images, WaLLoC achieves
nearly 12× higher compression ratio (35:1 vs 6:1) compared to the VAE used in Stable
Diffusion 3, despite offering a higher degree of dimensionality reduction (16× vs 12×)
and similar quality (13.9 dB vs 13.8 dB DISTS). Compared to Cheng et al. [13], WaL-
LoC achieves more than 48× higher encoding throughput (14.0 vs 0.29 MPix/sec) and
similar quality (19.3 dB vs 16.9 dB DISTS). For stereo audio, WaLLoC achieves sig-
nificantly higher spatial quality (22.5 dB vs 15.7 dB SSDR) than Stable Audio’s VAE,
but with more than 300× higher encoding throughput. Examples of decoded images
from the LSDIR validation set are provided on Hugging Face 2. Additional results,
including GPU and Raspberry Pi throughput, are available in our code repository 3.

2Examples of decoded images
3Repository containing full code, experiments, and results

https://huggingface.co/datasets/danjacobellis/LSDIR_RGB_Li_48c_J3_nf8
https://github.com/danjacobellis/LCCL


4.2 Compressed learning and resolution scaling

Next, we describe our methodology for evaluating compressed domain learning.
(a) Applications, models, and datasets. We evaluate WaLLoC on 4 machine per-

ception tasks: (1) image classification, (2) image colorization, (3) document under-
standing and (4) music source separation. For classification and colorization, we train
ViT-Ti models with conditional position encoding [30] on the ImageNet-1k dataset.
For music source separation, we train a CNN to separate the vocal track from music
segments in MUSDB18-HQ. The CNN consists of 12 identical convolutional layers
structured identically to Stable Audio’s mid block [9]. For document understanding,
we use PaliGemma [4] fine-tuned at varying resolution on the DocVQA [31] dataset,
and report the average normalized levenshtein similarity (ANLS) on the test set.

(b) Resolution scaling strategy. For image classification, we reduce the input
sequence length by 4× or 16× compared to the baseline of 2562 pixels and 162 patches,
but keep the area of each patch constant (1/162). We report the accuracy of models
trained on reduced resolution inputs with models trained on the identically WaLLoC
latents. For document understanding, training models on the scale of PaliGemma
is outside the scope of this work. Instead, we evaluate on decoded WaLLoC represen-
tations using the highest-resolution PaliGemma variant (8962). To emulate the effect
of resolution reduction with this high-resolution variant, we downsample images to
the desired resolution, (2242 or 4482), then apply Lanczos resampling to interpolate
back to 8962. For Image colorization and music source separation, we increase
the input patch size proportionally to the resolution to keep the sequence length—and
therefore the required computation—roughly constant.

Results of compressed-domain learning and resolution scaling. Figure 1
shows the improvement in performance when using WaLLoC-derived representations
instead of resolution reduction. Across each of the four tasks, WaLLoC provides su-
perior accuracy to naive resolution reduction while providing the same improvement
in latency and memory consumption. For discriminative models, WalloC profoundly
increases accuracy of efficient image classification (50.6% vs 23.1% accuracy) and doc-
ument understanding (81.1 vs 43.7 ANLS). For signal enhancement, WaLLoC provides
superior scaling to high resolution and large patches—offering a 16.7% improvement
in colorization LPIPS and a 3.1 dB improvement in PSNR for source separation.

5 Conclusion and future work

We introduced WaLLoC, a compression framework to support compressed-domain
learning. Our experiments demonstrate that WaLLoC significantly accelerates down-
stream models without sacrificing accuracy, achieving up to 20× dimensionality re-
duction with minimal encoding cost. Future work will explore extending WaLLoC
to applications involving high-resolution signal types for which existing compression
methods fall short, such as hyper spectral images or whole-slide microscopy. These
domains present additional challenges but also offer greater potential benefits due to
increased signal redundancies.
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Appendix

Figure 5: Cheng et al. 2020 [13]

Figure 6: Stable Diffusion 3 VAE [12]



Figure 7: WaLLoC 4×

Figure 8: WaLLoC 16×



Figure 9: Stereo reconstruction of an audio segment from the MUSDB test set.

Task
Resolution
Equivalent

WaLLoC
Variant

Performance
(Resize)

Performance
(Compress) Change

Classification
(Acc., %)

642 px 16× 23.1 50.3 ↑27.2
1282 px 4× 55.8 64.3 ↑8.5
2562 px – 71.1 – –

Doc. VQA
(ANLS)

2242 px 16× 43.7 81.1 ↑37.4
4482 px 4× 78.0 84.1 ↑6.1
8962 px – 84.8 – –

Colorization
(LPIPS, dB)

1282 px – 1.76 – –
2562 px 4× 2.33 2.47 ↑0.14
5122 px 16× 2.43 2.83 ↑0.40

Source sep.
(PSNR, dB)

2.4 kHz – 31.1 – –
11 kHz 5× 32.0 34.4 ↑2.4
44 kHz 18× 31.8 34.2 ↑2.4

Table 3: Results of resolution scaling experiments.



Figure 10: Result of using the Cz = 12 RGB codec (WaLLoC 16×) to decode a 12× 3× 3

latent with all elements equal to zero except except for channel i, which is set to

0 0 0
0 31 0
0 0 0

.



Figure 11: Result of using the Cz = 48 RGB codec (WaLLoC 4×) to decode a 48 × 3 × 3

latent with all elements equal to zero except except for channel i, which is set to

0 0 0
0 31 0
0 0 0

.
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